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Abstract

Multimedia streaming over the Internet is becoming more and more
popular, and different technologies and protocols are currently being used.
However, the bursty nature of losses over the Internet is constantly asking
for effective solutions. Packet interleaving allows to cope with loss bursti-
ness, improving the quality perceived by different kinds of applications
at the cost of an additional delay. In this paper we tackle the problem
of how to apply such a transmission schema in real scenarios. For this
aim we firstly study the potential benefits of packet interleaving in sim-
ulation, which allows to understand its loss decorrelation power, and to
determine the interleaving configuration most suited to different network
conditions. We then present the design and prototype implementation of
a packet interleaver, which can be used both for a specific traffic source
(e.g. besides a video server) or a particular network path (e.g. before a
wireless link). We describe our design choices and the main issues we had
to solve during the implementation. Using the prototype we then perform
an experimental measurement campaign in order to understand the pros
and cons of packet interleaving in real networks. Achieved results allow to
confirm findings obtained in simulation and to uncover issues related to
real world scenarios. Finally, using an improved interleaving schema we
discuss the interactions between packet interleaving and transport proto-
cols with congestion control, and we show how it is possible to mitigate
negative effects the interleaving has on such protocols.

1 Introduction

Packet loss degrades the performance of Internet applications, affecting the qual-
ity perceived by the users (the so called Quality of Experience). This is even
more true with multimedia streaming applications. In facts, while such appli-
cations are less sensitive to the network delay, their performance is dominated
by the loss of packets. On the other hand, Internet has being more and more
used for audio and video streaming. Even more because current technology al-
lows users to upload their multimedia contents both on- and off-line. YouTube
as well as p2p streaming applications such as Soapcast or TvAnts are clear
examples of such a trend. Several studies in literature reported on the charac-
teristics of the loss process in different environments (backbone [YKT96] and
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stub networks [CAK+04]), with different kinds of traffic (unicast [YMKT99] and
multicast [BCVG95]), different protocols (UDP [YMKT99] and TCP [Pax99]),
and at different time scales (sub-round trip time [WCL07] or larger [Pax99]).
All these studies reported that losses on the Internet are not isolate but rather
happen in bursts. The problem is that the performance of streaming applica-
tions, which often use predictive codecs such as MPEG, is more impacted by
bursty losses than the by same quantity of isolated losses [LAG03]. To cope
with this problem different techniques have been proposed which can roughly
be classified as FEC- and ARQ-based. However, they normally imply overhead
in terms of error-correction information, which have to be added before trans-
mission (FEC) or retransmitted in case of loss (ARQ). Interleaving, also know
as time diversity, represents a good candidate for these networking scenarios
allowing to spread the losses over the multimedia stream without transmitting
any additional information.

In this paper we present a simulation and experimental analysis of packet-
level interleaving aimed at understanding if and how such technique can be
exploited in real networks. After discussing the main assumptions at the base
of our work (Section 3), we analyze the benefits of interleaving in simulation.
To this end, we develop a simulation framework to discover the configurations
most suited for different channel conditions (Section 4). We then present a
prototype application we designed, developed and publicly released that allows
to experiment with time diversity on real networks (Section 5). Possible appli-
cation scenarios are discussed together with design and implementation issues.
Thanks to such application, we perform an analysis of the performance of time
diversity with real traffic (Section 6). Obtained results show how to deploy such
technique on real networks. However, they also evidence that some important
issues have to be addresses, especially when using transport protocols with con-
gestion control algorithms such as TCP, SCTP, and DCCP both with CCID 2
and 3. We devise a simple mechanism to mitigate the effect of the buffering
operation performed by our application, showing the obtainable improvements
(Section 7). We believe that this work provides interesting insights and tools to
increase the performance of multimedia streaming applications .

2 Related work

2.1 Measurement and modeling of packet loss

The work [BCVG95] presents a study of packet loss experienced by audio pack-
ets. The authors use an audio conferencing tool to send the packets in both
unicast and multicast mode. In this second case they use the MBone facility.
Looking at the sequence numbers of the received packets, the authors report
information related to the number of packets that are consecutively lost on dif-
ferent Internet paths. In particular they show that the number of consecutive
lost packets is small unless the network is highly congested. They then derive
a model to represent this loss phenomenon, which is partly based on queuing
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theory. The paper ends with a discussion on the use of the FEQ or ARQ for
this kind of traffic.

In [YKT96] the authors report the results of a measurement campaign con-
ducted on the MBone network. By monitoring the packets received from an
Internet radio station by different hosts around the world, the authors study
properties of packet loss such as correlation in space (different sites at the same
time) and time (same sites at different times). The results show that the ma-
jority of the bursts have length smaller than 7 packets.

Paxon presents the results of a large scale TCP measurement in [Pax99].
To obtain the measures the author uses a set of measurement daemons that
perform 100 Kbytes transfers using TCP while capturing the packet traces with
tcpdump at sender and receiver sides. The obtained results show how some
popular assumptions such as in-order packet delivery, FIFO bottleneck queuing,
independent loss events, single congestion time scales, and path symmetry are
violated in practice. As for the losses in particular, Paxon reports the average
values as well as the conditional probability of having a loss after another, which
shows that the loss events are not independent.

In [YMKT99] the authors present an analysis of the correlation properties
of packet loss. They perform long-term measurements using both unicast and
multicast from a host located at the University of Massachusetts at Amherst
towards different hosts in USA and Sweden. The results show that: i) there is
a high degree of non-stationarity in loss samples; ii) the minimum time after
which the samples are uncorrelated is about 1 s; iii) the losses can be modeled
by using a Bernoulli model (in 7 cases), a 2-state Markov chain (in 10 cases),
or a higher order Markov chain (in 21 cases). They also discuss whether it is
better to use an exponential smoothing rather than a sliding window to obtain
a good estimate of the average loss rate.

In [CAK+04] the authors report passive measures of packet rate, bit rate,
and loss from a campus network. With regard to this last parameter, the results
show that while a high loss is observed on highly congested links, losses are also
observed on very underutilized links (i.e. utilization of about 5%). The authors
say that such losses are probably caused by spikes in the traffic rate that are not
observable at the time resolution they used (larger than or equal to 1 second).

Wei et al. in [WCL07] report the results of an analysis of the behaviour of
packet loss in sub-RTT scale performed with simulations, emulations, and on
the Internet. They show that the loss process is bursty on such time-scale, and
they show the implications for congestion control algorithms. They also report
on the possible origins of such burtsiness. Moreover, they perform investigations
on the fairness between congestion control algorithms based on packet windows
and on bit rate.
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2.2 Interleaving

2.2.1 Interleaving at packet level

In [SRPIP04] the authors present a simulation framework to study packet in-
terleaving. Results are presented related to two channel models, one with un-
correlated random losses and the other one with correlated losses following a
Markov chain. They assume the delays to be Gamma distributed, citing the
work [Pax97], and they use a quality function to estimate the benefit of the
packet interleaving.

In [YC97] the authors present a system that performs packet interleaving on
MPEG audio. The work contains an interesting introduction to the problem of
packet interleaving and a description of the system to both interleave the packets
and recover from possible errors. The authors briefly discuss the problem of
determining the optimal interleaving configuration, and they present the results
of an evaluation performed both in simulation and on real networks, which show
the loss decorrelating power of their scheme.

In [LAG02] a study of the effect of packet interleaving on real video sequences
is performed. A loss model is used to determine the interleaving configuration
most suited to the channel conditions. A delay-distortion optimization problem
is set in order to choose the interleaving block sizes taking into account both
the maximum acceptable delay constraint and the minimal distortion objective.
Basically, knowing the maximum delay, they test all the possible configuration
and choose the one providing the minimal average distortion according to the
loss model.

2.2.2 Interleaving at frame/packet level

The work [CZ03] presents a research exploiting interleaving on MPEG encoded
video frames. The proposed system acts just before the MPEG encoder applying
the interleaving to the sequence of frames, i.e. frame position is altered before
encoding. The resulting sequence is surely more robust to possible frame loss
but the compression is less efficient because some temporal redundancy is lost
due to the reordering. The system is evaluated using real videos ranked by real
users. Results show that the average score is higher for interleaved frames and
that an interleaving depth of 5 achieves in some cases better performance than
an interleaving depth of 2.

In [LR05, LR06], the authors present an interleaving scheme that operates
before a video encoder (the kind of encoder is not specified but the scheme
is useful with predictive codes). Basically, the video stream is divided in two
sub stream, which are then encoded separately. After encoding, the frames are
rearranged in their original position. The fact that they have been coded by
separate encoders, however, allows to be more resilient to burst losses as the
reference and predicted frames are never consecutive. The decision on which
frames to put into each sub stream is made using a Markov Decision Process,
whose reward function takes into account the event that frames can not be
decoded because a reference frame has been lost.
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The authors of [CB01] perform a simulation study of interleaving applied
to layered coding schemes. The proposed solution interleaves base information
with enhancement one. The authors test also the usefulness of randomizing the
obtained sequences. Simulations are conducted by using loss patterns from real
traffic. Results are presented in terms of how many base packets are lost after
applying both the interleaving only and the interleaving plus randomization. In
most of the cases the interleaving and randomization are able to actually protect
the base information from burst losses.

The authors of [CB01] refer to another work by them ([LAG03]) for what con-
cerns the study of the channel and the derivation of the loss model. In [LAG03],
in particular, they provide information about the effect of bursty rather than
isolated losses on videos. They present a model to estimate the distortion caused
by losses on videos. Simulation results show how a burst of losses actually causes
more distortion than an equal number of isolated losses.

The work [WL99] is concerned with the design and verification of a technique
to transmit voice over the Internet exploiting interleaving and a matrix-based
transformation of the sent voice samples. The packet receiver continuously in-
forms the sender about the status of the channel, i.e. the loss pattern. The
sender then applies a matrix-based transformation to the voice samples in order
to compensate the effect of lost samples. Moreover, the voice samples are in-
terleaved by putting the odds ones in one packets and the even ones in another
packet. Before explaining the details of the technique, the authors present the
results of a measurement campaign aimed at estimating the loss pattern between
6 Internet hosts located in China, Japan, Italy, and USA.

The work [CC01] steps from the assumption (demonstrated in other papers
according to the authors) that the MPEG encoder is more sensitive to isolated
losses rather than burst losses. The authors then explain that performing an
interleaving at symbol level before applying a channel coding scheme such as
Reed-Solomon has the effect of protecting the bit stream from channel error, but
results in isolated losses at the source (MPEG) level. Therefore they propose
to apply interleaving at source level (to the bit stream produced by the source
encoder), then to apply the FEC, and then to re-apply the interleaving on the
obtained symbols. This will protect the stream from channel errors but will
result in burst losses at the MPEG decoder. The reported results show that
this scheme is able to increase the peak signal-to-noise ratio of about 5 dB.

2.2.3 Interleaving at bit/symbol level

In [SFLG00] the authors develop a model that allow to understand the achiev-
able performance with a given channel and coding scheme. The model is also
able to capture the effect of interleaving on the performance. Thanks to a
theoretical analysis, the authors show how the interleaving is effective in decor-
relating the losses, asymptotically approaching the memoryless case. They then
conclude that interleaving is a very effective tool if the additional delay is ac-
ceptable.

With regards to wireless networks, an interleaving scheme to alter the order
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Figure 1: Packet level interleaving

of symbols before applying a FEC scheme is proposed in [CSSG04]. Taking into
account Bluetooth networks, the authors present both analytical and simula-
tion results that show how changing the order of the bits inside every single
packets and then applying the standard Bluetooth FEC allows to obtain better
performance. Simulation results related to TCP throughput are also presented.

2.3 Competing techniques

In [WtTAE02] the authors propose and evaluate a technique consisting in chang-
ing the order of packets in a streaming flow such that I and P frames are sent
before the related B frames. In this way, even when the delay of the network
is such that the I and P frames cannot be reproduced because they are too
late, it can still be possible to reproduce the related B flows. This technique is
particularly useful in networks with largely varying delays.

Kalman et al. [KSG02] propose a technique that combines adaptive media
playout with rate-distortion optimized streaming. Basically, they suggest to
employ a control strategy that works coordinating the media streaming server
with the receiver. In such proposal the server uses an already proposed system
to decide the rate of the streaming in order to optimize the total distortion.
The client instead employs a technique to decide the playout speed (the frames
are shown for a longer period if it has to slow down) as a function of the buffer
status.

3 Time diversity at packet level

As shown in Section 2, the interleaving has been applied at different levels,
which range from the bit/byte to an entire frame of a video stream. We decided
to work at packet level for two reasons: i) the losses on the Internet happen at
such level, and ii) this allows to exploit the flexibility of IP, which is not tight
to a particular technology neither to a particular streaming application.

The basic idea to realize packet interleaving is to resequence the packets be-
fore transmission. The resequencing allows to space out originally close packets
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Figure 2: Block interleaving

such that a loss of consecutive packets is translated in a loss of distant ones. In
Fig. 1 we report an example of such scenario. We can observe that using the
interleaving on a sequence of 12 packets causes a loss of 3 consecutive packets
(from the fourth to the sixth one) to be perceived at receiver side as the loss of
packet number 2, 6, and 10. If interleaving was not used than the lost packets
would have been the number 4, 5, and 6.

Interleaving techniques can be classified in periodic and pseudo-random.
In the first case data is divided in sequence of equal length, using the same
interleaving schema for all the sequences. In the second case, instead, pseudo-
random sequences are used in which the position of data in the interleaved
sequence is not the same for all the sequences. In practical realizations, periodic
interleaving is almost always used due to its simplicity. For this reason in the
following we will focus on this technique only.

The main disadvantage of packet interleaving is the delay introduced. In
order to resequence a stream of k packets, it is necessary to wait for them. For
example, looking at Fig. 1, packet number 4 has to wait until packet number
11 arrives before being transmitted. Such delay is however acceptable for cer-
tain kinds of applications such as audio and video streaming. Moreover, it is
controllable through the length of the interleaving sequence.

Besides, even when the length of the sequence is chosen, determining the
optimal permutation of the sequence is not an easy task. Up to now, the only
solution for this problem has been an exhaustive search, which is clearly feasible
only for small values of k. For this reason, interleaving is commonly implemented
in blocks (in this case we speak about block interleaving). Block interleaving is
made by inserting packets into a matrix by row, and picking them by column,
as shown in Fig. 2. Basically, the flow of packets is divided in sequences of
k packets. Each sequence is then placed into a block, a matrix of size n × m
where: n, the number of rows, is called interleaving depth; and m, the number
of columns, is called block size.

Considering a flow of packets F = {Pa, Pb, Pc, ...}, and the example block of
size 4×3 reported in Fig. 2. Then the packets will be inserted such that Pa will
be in position (1, 1), Pb will be in position (1, 2), Pc will be in position (1, 3),
Pd will be in position (1, 4), Pe will be in position (2, 1), .... And the packets
will be transmitted in the following order: Pa, Pe, Pi, Pb, Pf , Pm, ....
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We can easily guess that the effectiveness of such transmission schema de-
pends on the values of n and m1, and on channel conditions. For example, a
burst of length B will be converted in smaller bursts of length B/n. In the ideal
case, when n ≥ B we are able to convert the burst in an equivalent number of
isolated losses spaced of m or m − 1 packets. Therefore, increasing n and m,
the capacity of converting bursts into isolated losses increases, i.e. we can deal
with bursts that are longer and longer. On the other hand, increasing n and m
has two counter effects: 1) the number of bursts of small length increases; 2)
the buffering delay, which is equal to (n−1)× (m−1), increases. This trade-off
represents one of the main aspects to consider when we want to implement the
interleaving on a real network, with real traffic. How to chose the parameters
depends on different factors such as the channel conditions, the kind of appli-
cation, etc. On the other hand, with this technique we are able to decorrelate
losses in a simple way and with no additional bandwidth requirements.

3.1 Finding the optimal parameters

As explained before, an important challenge we have to fact if we want to deploy
a time diversity technique is how to chose the block sizes n and m once we know
the delay constraint. As proposed in [LAG02], we could proceed in a theoretical
way as follows. Let us introduce the following notation.
Ko = k1, k2, .... is the set of indexes of lost packets when the interleaving is not
used,
Ki = I(n, m, Ko) is the set of indexes of lost packets when the interleaving is
used with a block of size (n × m),
D[Ki] = D[I(n, m, Ko)] is the distortion associated with the decoded stream,
which is a function of Ki and therefore of the parameters chosen for the inter-
leaving. Such parameters are explicitly reported in the definition.
We can then set the problem of finding the optimal parameters in this way.
Given the loss characteristics of the channel and the delay constraint (Cdelay),
we look for the couples (nopt, mopt) that minimize the distortion2 D:

(nopt, mopt) = argmin
n,m:(n−1)×(m−1)≤Cdelay

D[I(n, m, Ko)] (1)

We could then think of an exhaustive search algorithm for solving this prob-
lem, which works as follows.

1: Estimate the loss pattern Ko using the channel characteristics.
2: Determine the possible couples (n, m) using the maximum allowed delay

Cdelay .
3: for all the (n, m) determined do
4: Determine Ki

5: Estimate D[n, m, Ki]
6: Determine (nopt, mopt) using (1)

1Once l and n are chosen, m is automatically determined.
2The distortion depends on the particular application considered.
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7: end for

This algorithm requires the perfect knowledge of the channel characteristics,
and, in particular, of the distribution of the burst length. As also stated in
[ReST05], we can analytically obtain a closed form for such a distribution only
for small interleaving delay and single path transmission. This poses a limit
to the applicability of such an algorithm, which is therefore not effective to
deal with real network scenarios. Moreover, performing an exhaustive search
jeopardizes the simplicity of the interleaving as a methodology that can be
used also on high-speed networks. For this reason, in order to determine the
optimal parameter values we performed an extensive set of simulations, which
are presented in the next section. Before presenting the simulations, in the
following we explain the loss model we used.

3.2 Loss model

A typical characterization of the loss process over the Internet is provided by
the continuous-time Gilbert model [G+60], which is also referred as 2-state
continuous-time Markov chain (2-MC) [ReST05, WCL07]. Such model is able
to capture the potential correlation between consecutive losses, which is the
common case on the Internet [YMKT99]. Due to FIFO queuing discipline used
by routers, it is very common to discard a number of consecutive packets from
the queue when a congestion event is detected. Moreover, routing decisions are
taken at time intervals that are usually longer than flow durations. This im-
plies that when a congestion happens, different packets from the same flows are
discarded in most loss events. On the other hand, such model has also proven
to be able to capture the loss dynamics on wireless networks [CSSG04]. This is
because once the wireless channel turns bad, which happens because of atten-
uation, fading, scattering, or interference from other active sources, the errors
will happen in bursts and becomes dependent on each other. It is also worth
noting that 2-MC is not the only neither the fittest model for Internet traffic
dynamics. It has actually been proved that Markov chains with more states are
able to obtain higher modeling accuracy [YMKT99] in some cases. However,
2-MC represents the best compromise between complexity and accuracy.

Let X = {X(t) : t ≥ 0} the aleatory process of losses following the Gilbert
model. The state X at time t can assume one of the following values: b or g
(b = “bad” and g = “good”). Process X(t) at a fixed time is characterized by
the parameters µg and µb, which can be though as the rates at which the chain
passes from state g to state b and vice versa. A diagram of the 2-state Markov
chain is reported in Fig. 3.

In general, when X(t) is in state b the probability to loose a packet is much
larger than that in state g. To simplify the problem we assume that when a
packet is transmitted and channel is in state b, then the packet is surely lost.
The packet is surely received in the opposite case. For this reason we will refer
to the two state as “loss” and “no-loss” beside “bad” and “good” respectively.
The steady state probabilities to receive or loose a packet are respectively equal
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Figure 3: 2-state Markov chain

to: ωb = µb

µb+µg
and ωg =

µg

µb+µg
. It is worth noting that we consider a packet to

be lost either when it is not delivered to the destination, or when it is delivered
too late, and it is therefore not useful for the application (e.g. audio samples
arriving after playback time). To further simplify the problem, let us substitute
the continuous-time model with a discrete-time one. Such transformation is
justified by the fact that we are only interested in the behaviour of the network
when packets are sent. Therefore, once we fixed the sending rate to S = 1/τ ,
with τ being the inter-packet time3, we can express the transition probability
in the discrete case as

pgg(τ) ≡ P (Xn+1 = g|Xn = g) = ωg + ωbe
−(µg+µb)τ (2)

pgb(τ) ≡ P (Xn+1 = g|Xn = b) = 1 − pgg(τ) (3)

pbb(τ) ≡ P (Xn+1 = b|Xn = b) = ωb + ωge
−(µg+µb)τ (4)

pbg(τ) ≡ P (Xn+1 = b|Xn = g) = 1 − pbb(τ) (5)

In this way we can easily model the process of sending a flow of n packets
on a link using a time-discrete Markov process that evolves in n steps. In
particular, assuming the homogeneity of the Markov chain and choosing τ = 1,
the probabilistic description of such process can be obtained by using a 2-MC,
see Fig. 3, having p = pbg(1), which is the probability that the next packet is
lost given that the previous is not, and q = pgb(1), which is the probability that
the next packet will be correctly received given that the previous was lost. In
general, the following condition holds: p+ q ≤ 1. However, if p+ q = 1 then the
model becomes a Bernoulli one, for which losses are independent and happen
with an average probability p̂.

In the general case, the probability to loose n consecutive packets is equal to
(1− q)n−1q, according to the geometrical distribution. While the probability to
receive n consecutive packets is equal to (1−p)n−1p. Moreover, the steady-state
probabilities for the two states are πb, which is the probability of staying in state
b, and πg, which is the probability to stay in state g. They can be evaluated
using the following

3Note that here we are implicitly assuming constant bit rate traffic. This is because the
simulations presented in the following section are actually performed with this kind of traffic.
Besides this, the model derivation can be extended for other kinds of traffic.
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πb =
p

p + q
, πg =

q

p + q
(6)

In particular, πb represents the average loss probability. Another impor-
tant parameter, which is typically considered as the channel memory because it
represents the correlation between losses, is ρ. It is defined as

ρ =
1 − q

p
(7)

Again, to obtain a Bernoulli model it is sufficient to impose ρ = 1, and the
losses will be independent and identically distributed. This implies that a loss
has the same probability to happen given that the previous state was b or g.
On the other hand, ρ > 1 implies that a loss is more probable if the previous
state was b than if it was g, i.e. if the previous packet was lost. For this reason,
ρ is considered as an indicator of the channel memory.

A last important result is related to the probability of transition from state
i to state j in l steps (with l = 1, . . . , n; j, i ∈ {b, g}, defined as

pji(l) ≡ P (Xn+l = j|Xn = i) (8)

Starting from the 1-step transition matrix

Q =

(

(1 − p) p
q (1 − q)

)

We have to calculate the l-step transition matrix Ql = Ql, and recall that
[Rod74]

pbg(l) = Ql(1, 2), pgb(l) = Ql(2, 1). (9)

Otherwise we can use directly the following [VGS05]

pbg(l) =
p

q + p
[1 − (1 − q − p)l], (10)

pgb(l) =
q

q + p
[1 − (1 − q − p)l]. (11)

4 Time diversity in simulation

In order to understand the benefit of packet interleaving, and to determine
the best trade-off values for its parameters (see Section 3.1), we conducted
some simulations using MatlabTM. In particular we develop some functions to
simulate the behaviour of the interleaver and the network. Then we calculated
some performance metrics for the received packet stream, evaluating the impact
of the interleaving parameters on the obtained results. Details on the performed
simulations and obtained results are presented in the next sections.
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Figure 4: End-to-end equivalent channel

4.1 Network model

Let us consider a path between a source and a destination as a series of a
number of links characterized by burst losses. If every link is modeled using
a 2-MC, it can be easily demonstrated [San04] that the end-to-end path can
still be modeled using a Gilbert model with equivalent parameters if the various
links are independent.

In facts, given a series of N links of a path, modeled with 2-MC with pa-
rameters (p1, q1), (p2, q2), . . . , (pN , qN ), it is possible to obtain an equivalent
model with parameters (peq, qeq), which represents the entire end-to-end path
(or equivalent channel) as shown in Fig. 4.

It is worth underlining that the possibility to obtain such equivalent model
is subject to the hypothesis that the parameters associated with the various
links are related to the characteristics of the packet flow of interest. In other
words, such parameters should be those that our flow of interested, or other
flows with the same characteristics (packet sizes, inter-packet times, bit-rate,
...), would experiment. Such hypothesis is reasonable because the parameters
(p1, q1), (p2, q2), . . . , (pN , qN ), even if specifically related to the flow of interest,
take into account also the effect of other flows constituting the background
traffic [YMKT99].

Under such hypothesis, the Gilbert model for our equivalent channel will be
characterized by the following probabilities (see Appendix).

peq = 1 −
N
∏

i=1

(1 − pi) (12)

qeq =

∏N

i=1 πgi

1 −
∏N

i=1 πgi

peq (13)

where peq is equal to the probability that the end-to-end path switches from
state “no-loss” to state“loss”, and qeq equal to the probability that it passes
from state “loss” to state “no-loss”. This can be used for modeling a generic
network topology based on the description of the single links of all the possible
paths between a source and a destination using equivalent channels [JPF05].
In facts, if we have a topology in which the links are described using 2-MC,
it is possible to obtain an equivalent representation using (12) and (13). On
the other hand, if cannot obtain an equivalent channel mode by means of such
equations, it is also possible to use the parameters of the worst link for the end-
to-end path [GLT+02]. In this case, however, a lower accuracy will be obtained.
Finally, thanks to an on-line estimation of the behaviour of the end-to-end
paths between a source and a destination, it is possible to directly obtain the
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Figure 5: Simulation of packet loss

couples (peq , qeq) associated to the various paths, and to continuously update
them [TG04].

4.2 Running the simulations and collecting results

We model the packets generated by a source as an array of integers, each of
which represents the sequence number of a packet. Such sequence is given
as input to a function, called path(I, ρ, πb), which reproduces the behavior of
the end-to-end path. The function therefore receives as input also the path
characteristics in terms of πb and ρ. It then calculates a pattern of losses using
the model and the input parameters discussed above. After that, it applies the
loss pattern to the input sequence in order to simulate the effect of the path
traversal, substituting the sequence numbers of the packets that are lost with
a 0. The output sequence will be therefore constituted by a series of positive
numbers corresponding to the correctly received packets, and 0s corresponding
to the lost packets (see Fig. 5).

When the interleaver is active, before being passed to the path() function, the
input array is preprocessed by another function called block interleaver(I, l, n, m),
which changes the order of the packets inside the input array in order to perform
a block interleaving with parameters l, n, and m.

After the output sequence is obtained, we calculate some metrics to evaluate
the effect of the interleaving. In particular, we evaluate the distribution of the
length of the loss bursts, and the distribution of the distance between two loss
event (i.e. the length of the no-loss sequences). While the importance of the
length of the loss bursts is immediately clear, some considerations should be
made about the no-loss sequences. Once the average loss rate is fixed, the loss
bursts and the no-loss sequences represent two tightly linked aspects of the same
phenomenon: the more we reduce the loss-burst length, the more we bring losses
closer to each other. For this reason, the no-loss sequence length may seem a
redundant parameter. However, in some cases too close loss events can cause
similar effects to loss bursts, decreasing application performance. This happens,
for instance, when certain types of codecs are used for videos and the distance
between losses becomes lower than a threshold [LAG03]. In these cases no-loss
sequence length plays an important role in order to understand if and how to use
packet interleaving. For a increased readability of the results, in the following
we report the average value and the variance of these two variables.
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Table 1: Parameters of the simulations performed.

Parameter Values
Interleaving block size 48

Interleaving block depth [1, 2, 6, 12, 24]
πb (loss) [0.01, 0.03, 0.1, 0.25]
ρ (rho) [1, 3, 8, 15, 30]

repetitions 1000

4.3 Results

We performed a number of simulations with different values for all the previously
cited parameters. Such values are reported in Tab. 1. The simulations were
conducted using all the possible combinations of the parameters reported in
such table. As shown, we tested different values of average loss as well as
different values of loss correlation. This allows to understand the impact of
each single parameter.

For space constraints we cannot report all the obtained results. We therefore
restrict our analysis to the most important ones, which are useful to assess the
impact of the interleaving. The plots in Fig. 6 shows the average value of both
the loss-burst length and the no-loss sequence length for four representative
combinations of ρ and πb, which are related to progressively degraded channel
conditions. The plots in Fig. 7, on the other hand, present the same parameters
but obtained using a channel with fixed πb (i.e. fixed loss rate) and progressively
increasing loss correlation (i.e. increasing burst-loss length).

As a first consideration, the results confirm the effectiveness of the interleav-
ing in reducing the average loss-burst length. As shown in the two top plots
of Fig. 6 and 7, in all the cases such parameter presents a decreasing trend
when increasing the interleaving depth. We also observe that all the curves are
steeper when the length of the loss-burst is high, i.e. the slope decreases when
the interleaving depth increases. Which means that the more burstiness we
have the more convenient is to use the interleaving. The same behaviour can be
observed comparing the curves related to the different values of ρ: the higher is
the correlation (i.e. higher burstiness) the more effective is the interleaving.

This translates in an asymptotic behaviour of the curves. Increasing the in-
terleaving depth the curves tend to that achieved on a channel with no memory,
which is a line parallel to the x-axis and determined only by the value of πb.
This happens because at a certain point the interleaving manages to make the
losses perceived as uncorrelated, i.e. the channel behaves as a Bernoulli one. Af-
ter such point, further increasing the interleaving depth provides no additional
benefits. This behaviour is also confirmed by the plots related to the no-loss
sequence length (bottom plots of Fig. 6 and 7). For this second parameter we
observe how the interleaving actually decreases the no-loss sequence length (i.e.
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Figure 6: Simulation results obtained with different values of πb and ρ.
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Figure 7: Simulation results obtained with different values of ρ and πb = 0.1.
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(a) Interleaving box before a wireless link.

(b) Interleaving box beside a streaming server.

Figure 8: Two possible application scenarios.

losses get closer), as anticipated in Section 4.2. Also, we observe that the trend
of the plots is very close to that of the loss-burst length. This is also due to
the fact that the interleaving does not alter the average loss rate, which can be
roughly seen as the ratio between the average loss-burst length and the sum of
the average no-loss sequence length and the average loss-burst length.

From this analysis we can devise a simple heuristic to determine the optimal
parameters for the interleaving: the interleaving depth has to be chosen look-
ing at the value for which the loss-burst length reaches the asymptotic value.
Clearly, if we are interested to avoid that the no-loss sequence length goes below
a certain value we have to take into account also the bottom plots of Fig. 6 and
7.

5 TimeD: deploying time diversity in real net-

works

We stepped from the idea of developing a solution to modify the order of packets
traversing or generated by a host, working on every IP-based network, with every
transport protocol and every application. For this reason our platform had to
work at the IP level.
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As a starting point, we thought about two possible application scenarios,
which are depicted in Fig. 8. In the first scenario the interleaving (realized by
the box called TimeD in such figures) operates on aggregated traffic just before it
traverses a wireless link (or a particularly congested path). The second one sees
the time diversity employed beside a streaming server to protect the video/audio
traffic from the losses it will encounter on the Internet. While these are the two
scenarios traditionally used to show the effectiveness of the interleaving, our
application is actually able to work also in novel networking environments (see
Section 7).

After deciding the initial operating scenarios, we passed to the identification
of the implementation methodology and tools more appropriate for our aims.
We decided to look at Linux operating system (OS) because it allows easier
access to and modification of the networking stack with respect to other OS.
Moreover, this OS provides more flexibility and allows the interleaving applica-
tion to be easily deployed as an embedded system (we will call it interleaving
box) in any operational network. We then considered the possibility to work
both at kernel and user level. We opted for an user-space application for two
reasons: i) it allows quicker and easier prototype development; ii) more im-
portantly, it allows to interact with user-space monitoring applications, whose
output is useful to tune the interleaving parameters. The second reason was
particularly attractive for us, as explained in Section 8. After looking at differ-
ent available possibilities for modifying the order of packets traversing a Linux
host from user-space, we decided to use the libipq4: a mechanism provided by
netfilter5 for passing packets out of the kernel stack, queueing them to user-
space, and receiving them back into the kernel with a verdict specifying what
to do (e.g. ACCEPT or DROP). The queued packets may also be modified in
user-space prior to re-injection back into the kernel. With such mechanism we
were able to modify the order of the packets that are enqueued into such netfil-
ter queue, before re-injecting them into the kernel. As our application is based
on iptables, the packets to be interleaved can be selected using several criteria
such as the destination host, transport protocol and ports, etc.

Passing packets from kernel- to user-space has surely an impact on the perfor-
mance, which poses a limit on the maximum rate supported by TimeD. However,
we were interested in developing a prototype to experiment with time diversity
on real networks, having in mind the two initial application scenarios in Fig. 8.
Therefore, we verified that the delay introduced by such a process is negligible
with respect to the one of our experimentation scenarios, and that TimeD was
able to sustain the rate used for the experiments. We believe that performance
issues have to be carefully taken into account before the deployment of TimeD
in operational environments. We left this as a future work.

The implementation of TimeD was performed in C language. Fig. 9 shows
a high-level view of the operations of TimeD. The first step is the initialization
of the queue, creating a handle for it and defining the operation mode. After

4https://svn.netfilter.org/netfilter/trunk/iptables/libipq
5http://www.netfilter.org
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Figure 9: timeD high-level view

Table 2: Parameters of the experimentations.

Parameter Values
Interleaving block size 12, 48

Interleaving block depth [1, 2, 3, 6, 12, 24]
πb (loss) [0, 0.01, 0.03, 0.1, 0.25]
ρ (rho) [0, 1, 3, 8, 15, 30]

Repetitions 20
Protocols UDP, TCP, SCTP, DCCP 2, DCCP 3

Packet rate 10, 100, 1000 pps
Packet size 512 Bytes

that, the application starts a cycle in which it reads the packets from the queue,
inserts them into the interleaving block, reorders the block according to the
specified policy, and re-injects the packets into the kernel. At the end of the
cycle, i.e. before exiting, TimeD destroys the handle of the queue releasing
the resources. The current version of TimeD allows to define the size of the
interleaving block (number of rows and columns), a timeout to wait for packets
(see Section 7), and it uses a fixed policy for packet interleaving. An alpha
version of TimeD is publicly available at [tra] under the terms of the GNU
General Public Licence (GPL).

6 Testing and experimentation

We performed experimentations combining all the parameters reported in Ta-
ble 2. In the following we first provide information about the test environment,
and then discuss most important results we obtained.

6.1 Testbed and tools

In Fig. 10 we report the testbed we used for the experimentations. It is composed
of two Linux hosts connected using a Fast Ethernet network interface to a
hardware WAN emulator called Shunra Virtual Enterprise6. Such emulator is
able to reproduce the behaviour of a WAN in terms of different parameters. For
our experiments we used a feature called WAN Cloud, which allows to introduce
arbitrary delay, jitter, and losses to the packets in transit. We set a loss pattern

6http://www.shunra.com/shunra-ve-overview.php
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Figure 10: Testbed used for the experimentations.

equal to a 2-MC (the parameters are reported in Table 2), and left the delay
and jitter unset (i.e. no delay or jitter is intentionally added). On the host
named Server we run both the traffic sender application, TimeD, and the NTP
client. On the host named Client we run the traffic receiver application and the
NTP daemon. NTP was used to synchronize the clocks of the two hosts. While
providing a good accuracy in LAN environments7, the NTP daemon performs
continuous adjustments to the clock in order to cope with clock skew (i.e. the
difference between the frequencies of the two clocks). This can impact the results
of the measurements as the clocks can change during an experiment. To avoid
that, we instructed the NTP daemon on Client to only provide the clock on
the network, and we manually launched an NTP client (i.e. ntpdate) on Server
before each measurement cycle. To cope with the clock skew we performed a
clock-skew detection and removal procedure on the acquired data [MST99].

For generating probe traffic we used D-ITG [BDP07], a highly customizable,
packet-level traffic generator, which supports different transport-layer protocols
(UDP, TCP, SCTP, and DCCP) and provides a large number of features for
network measurement. Details about the configurations we considered in our
experimentations are reported in Table 2.

6.2 Experiments and results

We first present a comparison in terms of loss decorrelation power between the
results obtained in the experimentations and those obtained in simulation. After
that, we present results related to the additional delay introduced by TimeD.
This is to understand what are the problems we are going to face when deploying
such an interleaving strategy on a real networks. For these experimentations
we used UDP because we wanted to avoid interferences due to the activities
performed by the other transport protocols.

Fig. 11 reports the average lengths of loss bursts and no-loss sequences in
the four channel conditions analyzed in Section 4 (Fig. 6): ρ = 3 and πb =
0.01, ρ = 8 and πb = 0.03, ρ = 15 and πb = 0.1, ρ = 30 and πb = 0.25.
For these tests we instructed the WAN emulator to reproduce the behaviour
of such four channel conditions, and we let the probing traffic traverse the
emulated WAN. We also instructed D-ITG to produce a log of the experiments.
In such log D-ITG provides a sequence number for sent and received packets.
Using such information we obtained the samples of the performance indicators

7http://www.cis.udel.edu/~mills/ntp.html
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Figure 11: Experimental results obtained in four different channel conditions.
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Figure 12: Packet delay of a UDP flow subject to a 3x4 block interleaving.

discussed before. After these experimentations we also modified D-ITG in order
to directly report information about the loss bursts. The results in Fig. 11 have
been obtained by sending UDP packets at a constant rate of 100 pps with a
payload of 512 Bytes. From such figure we observe that the average values
of the length of the loss bursts and no-loss sequences is decreasing with the
increase of interleaving depth. This shows the actual decorrelation power of the
interleaving. Moreover, we observe that at a depth equal to 6 we achieve the
asymptotic value for almost all the channel conditions. The results obtained in
such experimentations are very close to those from the simulations. This means
that the benefit of interleaving can actually be exploited in a real environment
thanks to TimeD. It is worth stating that similar consideration can be done
with the other traffic and channel conditions. The main differences have been
obtained with the other transport-layer protocols. We discuss these issues in
details in Section 7.

Beside the capability to decorrelate the losses we were also interested in
understanding the additional effects that TimeD has on packet transmission. In
simulation we neglected the delay issues because we wanted to understand the
potential benefit and the optimal configuration. However, if we want to deploy
interleaving on a real network we have to consider all the effects that we might
expect. For these experiments we connected the two hosts in the testbed back-
to-back, disabling the WAN emulator. We then performed two different kinds
of measurements to estimate the two main delay components: the forwarding
delay and the buffering delay. To estimate the forwarding delay we performed
experimentations with TimeD configured to use a block depth = 1, and we
injected UDP packets at all the rates reported in Table 2. With such a block
depth, TimeD was forwarding the packets as soon as they entered the queue, and
no buffering was performed. We then performed the same experiments without
TimeD and compared the delays obtained. From this analysis we discovered
that the overhead due to forwarding operations is in the order of few tens of
microseconds at all the considered packet rates. We believe this delay can be
considered negligible, at least for the two application scenarios considered.
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For the buffering delay, we measured the transfer time experimented by
UDP packets using all the rates and interleaving configurations reported in
Table 2. Fig. 12 shows a zoom of the packet-by-packet delay of a UDP flow
with rate of 1000 pps passing through TimeD instructed to perform a 3x4
block interleaving. The saw-tooth trend is due to the buffering performed by
the interleaver, which waits for a block to be completed before re-injecting the
packets into the network. The result is that the first packets are kept in the
buffer for longer with respect to the last ones. In particular, the buffering delay
experimented by the i-th packet of a block of size N is equal to

δi =

N
∑

j=i+1

IPTj ∀i = 1, . . . , N − 1 (14)

where IPTj is the time elapsed between the arrival of packet j−1 and j (i.e. the
inter-packet time). The last packet will not experiment any buffering delay. In
the CBR traffic case, IPT is constant and the (14) becomes

δi = (N − i) × IPT ∀i = 1, . . . , N (15)

This explains the regular trend of Fig. 12. As already remarked before, such
delay has to be carefully taken into account from the application point of view.
For example, if we want to use interleaving for the streaming server in Fig. 8, we
could assume that the stream has a constant packet rate of 720 pps (i.e. frame
rate of 24 frames per second, 30 slices per frame, and a single slice per packet)
and packet sizes following a normal distribution [GW94]. In this case, using an
interleaving block of 48 packets implies a maximum buffering delay of about 65
ms, which is acceptable in most cases. However, such buffering delay will be
a cause of problems for transport protocols implementing a congestion control
algorithm. We discuss this issue in details in the following section.

Finally, we performed experiments aimed at understanding the maximum
throughput that TimeD is able to sustain. From these experiments we learned
that TimeD is able to work at full speed (i.e. 100Mbps) with all the interleaving
configurations in Tab 2, even when running on the same host as the traffic
generator.

7 Coping with congestion control

The results presented in the previous section allowed to understand that the
interleaving in a real network behaves very closely to the simulation environ-
ment. However, it worth saying that part of the merit is surely of UDP, which
does nothing more than adding a small (yet important) header to IP packets.
In current Internet scenarios multimedia traffic is transported more and more
frequently by protocols implementing at least a congestion control algorithm.
This is due on the one hand to the fact that such protocols are better suited
to adapt to varying network conditions, and on the other hand to the fact that
multimedia contents are frequently accessed through the WEB, encapsulated
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into HTTP. For this reason, it is important to understand the interactions be-
tween packet interleaving and congestion control. To this end we performed a
set of experiments with different transport protocols implementing such a con-
trol: TCP, SCTP, and DCCP with both CCID 2 and CCID 3 (we simply call
them DCCP 2 and DCCP 3 in the following).

In these experiments we completely disabled the WAN emulator and we
connected the hosts back-to-back. This was to isolate the effect of the losses
from that of the interleaving. The first condition we experimented was that
the connection between the two hosts was not established with almost all the
protocols. Only TCP was able in some cases to complete the 3-way handshake
and to send some packets. This is due to the fact that the congestion control
algorithms start sending packets at a very low rate, which is only increased when
acknowledgments are received. The buffering operation performed by TimeD is
clearly in contrast with such a behavior because the block has to be filled in order
to release the packets. The reason why TCP was able to actually overcome such
big obstacle is because it initially filled the buffer with several retransmissions
of the first packets. DCCP instead, while implementing a congestion control
algorithm, does not retransmit packets. So it was completely stuck in this
situation. For SCTP, finally, the number of maximum allowed retransmissions
for the first packets was set to a lower value with respect to TCP. Therefore, also
for such protocol TimeD locked the connection. It is also worth noting that the
performance of TCP in this situation was really low, and the end-to-end delay
reached values up to 30 s.

To cope with this problem we modified TimeD introducing a timeout for the
buffering operation. Basically, thanks to this modification, TimeD releases the
packets when either the interleaving block is full or a certain amount of time
has passed. This is already sufficient to avoid freezing the connections of the
protocols with congestion control. After such modification we performed exper-
imentations aimed at understanding the benefits of the timeout. In particular
we repeated all the experiments of the previous section, setting a timeout value
equal to N × IDT × 1.1. In this way UDP packets will never make a timeout
expire, and they will therefore experiment the same conditions as before.

Table 3 shows the average delay experimented by the packets with different
transport protocols and interleaving configurations. Remember that we are not
inducing any loss on the path. Therefore we are only observing the effect of the
interleaver. Recall also that the average buffering delay for a CBR flow subject
to interleaving with block size N can be obtained using Eq. (15). In particular,
the average buffering delay δavg is

δavg =
1

N

N
∑

i=1

δi =
(N − 1) × IPT

2
(16)

If we look at the values reported in Table 3 for UDP we can observe that they
are very close to the theoretical values. On the contrary, all the other protocols
considered the buffering performed by TimeD as a congestion. As a result
they reduced the sending rate, and their packets experiment a higher delay. It
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is interesting to note that the average delay experimented by DCCP packets
is higher than that of TCP and SCTP. This is due to the fact that the last
protocols performed a lot of retransmissions. As a consequence the actual rate
of packets in the network is higher, and the packets waited in the buffer for a
shorter time.

Table 3: Average delay of the packets when sending at 100 pps rate.
Delay [s]

Block
size UDP TCP SCTP DCCP 2 DCCP 3

3x4 0.059 0.123 0.197 0.280 0.277

6x2 0.059 0.123 0.146 0.280 0.276

Table 4 presents the number of packets received using the 4 different pro-
tocols when generating CBR traffic at 100 pps for 120 s, and using a 3x4 in-
terleaving block. We observe that UDP, TCP, and SCTP were able to transfer
all the packets injected by D-ITG, while DCCP was able to transfer less than
the half of such packets. The behaviour of UDP is clearly due to the fact that
it completely ignores the status of the network. TCP and SCTP were slowed
down by TimeD in the first period. However, they were able to quickly recover
thanks to the retransmissions. After a while, they reached a sending rate even
higher than that requested by the application, and they managed to send all
the requested packets.

We believe these considerations have to be carefully taken into account for
deploying interleaving on a real network. Besides, it is also worth underlining
that the timeout mechanism we implemented in TimeD is a simple way to solve
the issues with congestion control algorithms. In the case of DCCP we also
observed a decrease of the performance (less packets are delivered also when
there are no losses) due to the fact that the buffering is seen as a congestion.
To solve this problem we are now working on extending TimeD functionalities
introducing a more effective buffer management.

Table 4: Percentage of received packets sending 100 pps for 120 s.
Received packets [%]

Block
size UDP TCP SCTP DCCP 2 DCCP 3

3x4 100.0 99.9 99.8 40.8 41.4

6x2 100.0 99.9 99.9 41.5 41.6

8 Conclusion

In this paper we paved the way to the deployment of time diversity at packet
level in real networks. In particular we provided the following contributions: i)
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we developed a simulation environment for the study of time diversity in packet
networks; ii) using such simulator, we studied the achievable performance of
interleaving in terms of loss decorrelation, and we obtained the optimal configu-
ration parameters for several network conditions; iii) we designed, implemented
and publicly released a prototype application (called TimeD) that allows to
experiment with time diversity in real networks; iv) we experimentally stud-
ied packet interleaving with different application scenarios and protocols (UDP,
TCP, SCTP, and DCCP), showing how it it possible to obtain the same benefits
observed in simulation; v) we estimated the overhead of a platform to perform
packet interleaving in terms of buffering and forwarding time and achievable
rate; vi) we analyzed the interactions between time diversity and congestion
control protocols, and we proposed a simple modification to TimeD in order to
cope with such scenarios, evaluating also the achievable performance.

Our ongoing work is concerned with extending the functionalities of TimeD
in order to improve its performance especially when dealing with TCP, SCTP,
and DCCP. Our idea is to complement it with network monitoring features
in order to automatically and continuously tune the interleaving parameters.
Moreover, we are performing a careful analysis of the interleaving applied on
bidirectional traffic using TimeD on both ends of a network path.
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