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Abstract—The domain of medical decision making process is
heavily affected by vagueness and uncertainty issues and – for
copying with them – different type of Clinical Decision Support
System (CDSS)s, simulating human expert clinician reasoning,
have been designed in order to suggest decisions on treatment of
patients.

In this paper, we exploit fuzzy inference machines to improve
the knowledge-based CDSS actually used in the day-by-day clini-
cal care of β-thalassemia patients of the Rare Red Blood Cell Dis-
ease Unit (RRBCDU) at Cardarelli Hospital (Naples, Italy). All
the designed functionalities were iteratively developed on the field,
through requirement-adjustment/development/validation cycles
executed by an interdisciplinary research team comprising doc-
tors, clinicians and IT engineers. The paper shows exemplary
results on the on-line evaluation of Iron Overload during the
health status assessment and care management of β-Thalassemia
patients.

I. INTRODUCTION AND MOTIVATION

In recent decades, technological advances coupled with
research efforts have made possible to develop very complex
CDSS, defined as computer programs assisting physicians and
other medical officials in taking clinical decision [1], able to
exhibit highly sophisticated reasoning capabilities in order to
improve clinical decision-making, and, thus, promote more
efficient care practices. In particular, a knowledge-based CDSS
allows the provision of person-specific information that is
intelligently filtered, prioritized and presented at the right time
to clinicians, patients, staff, and others [2]–[4]. Early CDSSs
were designed from researchers on expert systems, with the
aim of programming the computers with rules that would allow
it to “think” like an expert clinician when confronted with a
patient.

Nowadays, there is a growing recognition that fuzzy-based
CDSS may be used, beyond the research activities, to assist
clinicians in practice, e.g. by taking over some routine
tasks, by warning the clinicians of potential problems, or
by providing suggestions for clinician considerations. It is
well recognized that fuzzy logic formalism is suitable to
deal with the imprecision and vagueness that are intrinsic
to many medical problems, offering a more realistic
interpretation for the clinical decision. Many fuzzy-based
methodical approaches have been proposed in literature for
the treatment and management of chronic diseases. A number
of fuzzy-based DSS have been proposed in literature for

specific diseases. An innovative and extensible approach,
implementing a fuzzy-based Decision Support System (DSS)s
for diagnostic applications, has been proposed by d’Acierno
et al. [5], demonstrating the capability of fuzzy logic to
overcome such critical issues in medical applications and
decision support. In De Brito et al. [6] a DSS based on fuzzy
model was developed to measure distress levels in cosmetic
surgerypatients. In Papageorgiou et al. [7] a decision support
module is produced by using a flexible approach called Fuzzy
Cognitive Maps (FCMs) to handle with uncertainty and
missing information during the treatment of uncomplicated
Urinary Tract Infection (uUTI) treatment. In Esposito et
al. [8] is described a fuzzy-based DSSs implemented for
assessing the health status of subjects affected by multiple
sclerosis during the disease progression over time. To this
purpose five prototypes of DSSs have been built, each of them
being associated to a different database, in order to compare
their results against those provided by a set of widely used
machine learning methods on the same set of databases.
Successively, the approach has been specifically applied to
build an evolutionary-fuzzy DSS for assessing MS patients
health status. However it is obvious that the possibility of
guaranteeing effective and appropriate services, that play
an important role within the wider and complex course of
patient’s treatment, will depend on resources, technologies
and knowledge used to implement the CDSS [9], [10].

In this paper, in accordance to recent research trends in
the care of the thalassemia [11]–[15], we focus our attention
on a study related to the daily-care of β-thalassemia patients.
More precisely, we improve the CDSS adopted by the
RRBCDU at Cardarelli Hospital for the monitoring and
management of β-thalassemia patients with fuzzy inference
machines. Thalassemia syndromes are a group of hereditary
blood disorders that are characterized by reduced, or absent,
beta globin chain synthesis and anemia. This pathology
represents, from a clinical point of view, an interesting
model of multidisciplinary management where cardiologist,
nephrologist, pneumologist, radiologist, endocrinologist, and
many other specialists are involved in the follow-up of
these patients coordinated by an hematologist or pediatrician,
as historically it happens in all thalassemia units of the
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world. The possible advantages coming from the adoption of
fuzzy-CDSS in outpatient care increase the hopes that this
tool could also improve key outcomes of thalassemic patients
and the related clinical conditions too. The expected impacts
of the proposed fuzzy-based CDSS, on the thalassemia care
outcomes, can be summarized as follow: i) improvement of
thalassemia-related parameters control, such as the control
of serum ferritin, iron overload or blood consumption, that
actually can be done only in marginal way by exploiting
common Electronic Health Record (EHR) systems; ii)
improvement of complications control; iii) reduction of costs
of care. In particular, the fuzzy-based CDSS, in conformity
with the guidelines recommended at national level, leverages
available data on the status of complications of about 450
patients treated at the RRBCDU of the Cardarelli Hospital
(Napoli, Italy). To allow the use of inferential analysis tools,
the system offers an easy-to-use Graphical User Interface
(GUI) for summarizing, analyzing and processing large
amounts of heterogeneous clinical data related to thalassemic
patients.

The rest of the paper is organized as follows. Sec. II briefly
describes the CDSS main features and the data used in the
study. In Sec. III we present the fuzzy inference machine,
by describing both knowledge representation and reasoning.
In Sec. IV we first illustrate the fuzzy reasoning structure
deployed for the specific case of the Liver Iron Overload
evaluation and then we present some exemplary results on
the practical use of the CDSS. Sec. V ends the paper with
concluding remarks.

II. SYSTEM AND DATA

The fuzzy-based thalassemia-related CDSS presented in this
work is designed to be used from every device (computer,
smart-phone tablet etc.) equipped with a browser and an
Internet connection. The CDSS has been engineered as a
system based on a three tier architectural model.

As of today, more than 450 patients have been treated at
the RRBCDU of Cardarelli Hospital, counting for more than
400000 database records. Data of thalassemic patients are
collected in different forms, such as time series, digital images,
indexes (e.g., expressed in percentage), boolean variables,
yes/no questions and can be related to:

• Personal information of the patients in treatment in the
Cardarelli RRBCDU (name, surname, date of birth etc..);

• Information related to the performed transfusions of a
patient with specific derived quantitative measures (Hb
value pre and post transfusion, time interval, number of
donor blood units etc.);

• Information obtained from the clinical tests executed to
assess the blood iron stores (serum iron, ferritin, transfer-
rin);

• Information obtained from heart and liver Magnetic Res-
onance Imaging (MRI) which patients regularly undergo
with related data (T2⋆, iron in mg, heart function, Liver
Iron Concentration (LIC), image path, etc. );

• Information obtained from the patient Cell Blood Count
with all related values (Hb, Ht, red blood cells data, white
blood cells data, etc.);

• Complication information: In the case a complication
occurs – e.g. endocrine, cardiac, hepatic, iron-related,
transfusion-transmitted infections etc. – information re-
lated to further secondary diseases is also acquired and
stored.

All acquired information are transferred to the server, where
relevant fields pertaining each patient are stored into the
database. In order to protect the patient privacy during clinical
trials, the patient name and other identifiers are correctly
replaced with a unique numeric ID, so that all patients remain
anonymous within the database structure [16].

III. FUZZY INFERENCE MACHINE

A. Knowledge representation

The design of a Fuzzy Inferential System (FIS) requires,
first of all, the definition of the domain knowledge in cooper-
ation with clinical experts by means of interviews, question-
naires and observation of their day-by-day clinical practice
[8]. The domain of knowledge embedded into the decision
mechanism of the system has been described in terms of lin-
guistic variables, linguistic values and membership functions.
A linguistic variable is a variable whose values are words or
sentences in a natural or artificial language that can be used
to ease a gradual transition between states, so as to naturally
express vagueness in measurements, unlike crisp variables.

Definition 1. Linguistic Variable [17]. A linguistic variable
(also named fuzzy variable) can be characterized by a quintu-
ple (L, F(L), U, R, M) in which L is the name of the variable;
F(L) is the term-set of L, that is, the collection of its linguistic
values; U is a universe of discourse; R is a syntactic rule
which generates the terms in F(L); and M is a semantic
rule which associates to every linguistic value X its meaning,
M(X), where M(X) denotes a fuzzy subset of U.

Definition 2. Fuzzy Variable [17]. A fuzzy variable is char-
acterized by a triple (L, U, F(L; u)), in which L is the name
of the variable; U is a universe of discourse (finite or infinite
set); u is a generic name for the elements of U; and F(L; u)
is a fuzzy subset of U which represents a fuzzy restriction
on the values of u imposed by L. F(L; u) will be referred to
as the restriction on u or the restriction imposed by L. The
assignment equation for L has the form

x = u : F(L) (1)

and represents an assignment of a value u to x subject to the
restriction F(L).

In the universe of discourse U a fuzzy set F (L; u) is
characterized by a membership function µ(F ) that assigns a
membership value to elements u, within a predefined range of
U , as follows: F = {(u, µF )|u ∈ U and µF : U → [0, 1]}. In
practice, a membership function is a curve that defines how



each element in the input space is mapped to a membership
value (or degree of membership) between 0 and 1.

In order to grant a simple interpretation of the knowledge
modeled via linguistic variables, linguistic values and mem-
bership functions have been designed following the approach
presented by Gariabaldi et al. [18].

To perform the fuzzy inference, the knowledge about the
medical decision-making has been formalized in terms of
fuzzy “if-then rules” relying on the structure defined for the
domain of knowledge. In so doing, fuzzy inference relies on
rules, defined as conditional statements written in the form “if
antecedent then consequent”, where antecedent is a fuzzy-logic
expression composed of one or more simple fuzzy expressions
connected by fuzzy operators, and consequent is an expression
that assigns linguistic values to the output variables [8]. Indeed,
fuzzy logic provide a tool that enables to approximate an
inference process i.e. the mental process by which human
reach a conclusion based on specific evidence.

B. Knowledge Reasoning

To create the inferential engine, for the evaluation of some
clinical aspect related to the patients’ status, all clinical vari-
ables have been linked in a Mamdani-style fuzzy inference
system according to different rules and membership func-
tions [19], [20]. The Mamdani scheme is a type of fuzzy
relational model where each rule is represented by an “if
antecedent then consequent” relationship. Mamdani method
is widely accepted for capturing expert knowledge. It allows
us to describe the expertise in more intuitive, more human-like
manner [21].

In the following is described the Mamdani method and basic
knowledge implemented into the system. At this stage of the
implementation of the fuzzy inference engine, we refer to a
multi-inputs single-output decision model.

Definition 3. Given m “if antecedent then consequent” fuzzy
rules R = {R1; . . . ; Rm}, with n continuous input variables
ui, i = 1, . . . , n, and the output variable y, the formulation of
the fuzzy rules is defined as follows:

if(u1, A1,1)AND(u2, A1,2)AND . . . AND(un, A1,n)THEN(y, B1)

...

if(u1, Am,1)AND(u2, Am,2)AND . . . AND(un, Am,n)THEN(y, Bm)
(2)

where ui are the input variables, y is the output variable, Aij

and Bi are fuzzy sets of the associated universes of discourse.

Now to perform inference, the first step is to evaluate
the “antecedent”, which involves fuzzyfying the input and
applying any necessary fuzzy operators to each rules in R.

Definition 4. Given the information input u = {u1, . . . , un},
the strength level or membership αi of the rule Ri is calculated
in terms of the degrees of membership µAij

. If the antecedent
clause (the if part) are connected with AND then:

αi(u) = min(µAi,1(u1), . . . , µAi,n(un)). (3)

Else if the antecedent clause are connected with OR then:

αi(u) = max(µAi,1(u1), . . . , µAi,n(un)). (4)

Each fuzzy rule yields a single number that represents the
firing strength of that rule. The second step is “implication”, or
applying the result of the antecedent to the consequent. Indeed,
the strength level is then used to shape the output fuzzy set
that represents the consequent part of the rule.

Definition 5. The operator of implication for the rule Ri is
defined as the shaping of the “consequent” (the output fuzzy
set), based on the “antecedent”. The input of the implication
process is a single number given by the “antecedent” (i.e. αi

computed as in Definition 4), and the output is a fuzzy set:

µBi(y) = min(αi(u), µBi(y)) (5)

where y is the variable that represents the support value of
output the membership function µBi

(·).
Now, in order to unify the outputs of all the rules, we

need to aggregate the corresponding output fuzzy set into one
single composite set. The inputs of the aggregation process
are represented by the clipped fuzzy sets obtained by the
implication process. The aggregation method we exploited in
our application is the max(·) one. Finally the defuzzification
process has been performed starting from the output fuzzy set
resulting from the aggregation process.

Definition 6. The operations of defuzzification is computed as
the center of gravity (COG) of the strength levels

COG(y) =

m∑
i=1

yµBi
(y)

m∑
i=1

µBi
(y)

. (6)

IV. RESULTS

In this section, we provide an overview of one of the fuzzy-
based functionalities implemented into CDSS for the practical
use on the field.

A. Fuzzy reasoning structure for the evaluation of Iron Over-
load

In what follows we describe, as exemplar case, the imple-
mentation of the FIS for the evaluation of the liver and heart
status of a patient. In this scenario, the crucial parameters for
the assessment of Iron Overload in the liver and heart [22]
are LIC and T2⋆ [23]. Specifically, LIC (sometimes also
referred as HIC - Hepatic Iron Concentration) results from
a test that gives a complete picture of how much iron is in
the liver (the test is performed by a non-invasive procedure
leveraging magnetic resonance imaging, or MRI). Moreover,
since MRI signals darken more quickly in regions of increased
iron concentration this darkening process can be described by
a half-life, similar to radioactive decay. The half-life for a spin-
echo image is known as T2 and the half-life for a gradient echo
is known as T2⋆ (the greater the tissue iron, the smaller the T2
and the T2⋆ become). The goal of the FIS is to synthesize on



a colored based scale the different grades of severity related
to the Iron Overload for liver and heath of the thalassemic
patient.
The fuzzification of the inputs (i.e. T2⋆ and LIC) has been
here achieved by using triangular and trapezoidal membership
functions defined in accordance with threshold values provided
by medical researcher, doctors, and clinicians of the RRBCDU
of Cardarelli Hospital, in Naples, Italy.
In particular, for LIC (see Fig. 1a) we have: DAnger Lic
(DAL), ALlarm Lic (ALL), SUfficient Lic (SUL), GOod
Lic (GOL). While for T2⋆ (see Fig. 1b) we have: DAnger
T2⋆ (DAT), SUfficent T2⋆ (SUT), GOod T2⋆ (GOT). The
membership functions related to the fuzzy sets have been
generated according to the indication of the clinicians, as
described below:

µDAL(LIC) =

{
(LIC − 14)/3 if 14 < LIC < 17

1 if LIC ≥ 17

µALL(LIC) =

{
(LIC − 5)/6 if 5 < LIC ≤ 11

(−LIC + 11)/6 + 1 if 11 < LIC < 17

µSUL(LIC) =

{
(LIC − 2)/3 if 2 < LIC ≤ 5

(−LIC + 5)/3 + 1 if 5 < LIC < 8

µGOL(LIC) =

{
1 if 0 ≤ LIC ≤ 1

(−LIC + 1)/3 + 1 if 1 < LIC < 4

µDAT (T2⋆) =

{
1 if 0 ≤ T2⋆ ≤ 7

(−T2⋆ + 7)/4 + 1 if 7 < T2⋆ < 11

µSUT (T2⋆) =

{
(T2⋆ − 8.67)/6.33 if 8.67 < T2⋆ ≤ 15

(−T2⋆ + 15)/6.67 + 1 if 15 < T2⋆ < 21.67

µGOT (T2⋆) =

{
(T2⋆ − 19)/4 if 19 < T2⋆ < 23

1 if T2⋆ ≥ 23

Starting from the membership functions, the set of rules
(defined according to Definition 3) – synthetically reported
in Tab. I and graphically represented in Fig. 2 – have been
derived. The fuzzy rules will be optimized after further field
tests.

Note that in our approach the fuzzy reasoning block for the
liver and heart status evaluation incorporates 12 standard rules.

The associated output function has been constructed by us-
ing 12 triangular membership functions [24], [25] as reported
in Fig. 1c. Each color is associated to a grade of severity
of the liver and heart status, in particular we have: Red (R),
Red Orange (RO), Orange (O), Yellow Orange (YO), Yellow
(Y), Yellow Green (YG), Green (G), Blue Green (BG), Blue
(B), Blue Violet (BV), Violet (V), Red Violet (RV). In our
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Figure 1. Membership functions. (a) Fuzzification of the LIC variable; (b)
Fuzzification of the T2⋆; (c) output membership function for the evaluation
of the liver and heart status.



LIC

T2*

RULE 1     if (LIC is DAL and T2* is DAT) then STATUS is R

RULE 2     if (LIC is DAL and T2* is SUT) then STATUS is O

RULE 3    if (LIC is DAL and T2* is GOT) then STATUS is YO

RULE 12     if (LIC is GOL and T2* is GOT) then STATUS is G

Σ
Colored 
STATUS

of patient

Figure 2. Logic flow of the fuzzy inference system of the Liver Status example.

Table I
FUZZY TUNING RULES.

LIC
DAL ALL SUL GOL

DAT R RV O YO
T2

⋆ SUT O B Y YG
GOT YO BG YG G

application a Green (G) output in associated to a good status
while a Red (R) output is associated to a dangerous situation.

The fuzzy implication operator, implemented by the infer-
ence engine, has been computed according to Definition 5.
The aggregation method to combine the output fuzzy sets
into a single fuzzy set (in order to make a decision) is the
max(·) operator. The defuzzification process – through which
the combined fuzzy set from aggregation process will output
a single scalar quantity (i.e., the output color) – is based on
Definition 6.

B. Results from the field: evaluation of Iron Overload

To provide an usage example on the field, among the more
than 450 patients treated at the RRBCDU of Cardarelli Hospi-
tal (counting for more than 400000 database records), here we
present exemplary results on the automatic evaluation of the
Iron Overload – and its trend – for two given patients (namely
ID 44 and ID 225). It is worth noticing that here we do not
stress specific conclusions regarding the application domain,
we are just presenting the features and the functionalities using
an usage example. Evaluation done with patients with ID 44
and ID 225 is generalizable and applicable to the entire set of
450 patients and then medical and clinical conclusions can be
easily provided.

In recent years, nuclear MRI techniques for assessing Iron
Overload in the liver and heart have been introduced [26].
Indeed, it is possible to evaluate the clinical status of patients
by leveraging on the inference machine and accounting for
different measurements at the same time, T2⋆ for heart and
LIC for liver [27].

Fig. 3 reports a screen shot of the “patient interface” for
the evaluation of the liver and heart Iron Overload. Here the
“liver and heart status” column represents the output of the
fuzzy logic decision mechanism (see Sec. IV-A) that supports

clinicians to evaluate the effectiveness of the medical therapy
helping them to lead the patient’s clinical status in a safe
zone (indicated by the color green). Clinicians can intuitively
compare the patient’s clinical status with the “Color Scale”
column, that reports a colored scale related to the several levels
of severity.

Fig. 3a confirms that the care of the patient with ID 44, with
respect to the Iron Overload, has been successful; indeed the
patient’s status moves in the ranking from the red level (high
risk situation) to the green one (no-risk, therapeutic goal met)
and then shows a slight deterioration moving in the cyan level.

Fig. 3b reports a screen shot of the patient interface for
the evaluation of iron overload in the liver and heart for the
patient with ID 225. In this case is possible to observe that
the treatment is ineffective, indeed the patient’s status doesn’t
follow the ideal sequence. This situation may be due to a
patient’s negative response to the treatment or to an unsuitable
clinical choice.

V. CONCLUSIONS

In this paper, we illustrated a study on the use of fuzzy logic
in the CDSS of the RRBCDU at Cardarelli Hospital (Napoli,
Italy) for the monitoring and management of clinical status
of β-thalassemic patients. The study has been executed in an
interdisciplinary research team comprising doctors, clinicians
and engineers and in this paper we have shown preliminary
exemplary results on the on-line evaluation of Iron Overload.
Thanks to the fuzzy-based features is possible to evaluate
the clinical evolution of β-thalassemic patients and to give
indications on the effectiveness of therapeutic process, thus
reducing errors and time.
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