
A Distributed Multiplatform Architecture For Traffic Generation

Stefano Avallone, Donato Emma, Antonio Pescapè and Giorgio Ventre
Dipartimento di Informatica e Sistemistica, University of Napoli “Federico II” (Italy)

{stavallo, pescape, giorgio}@unina.it, demma@napoli.consorzio-cini.it

Abstract
This paper deals with the specification and realization of a
synthetic traffic generator for IP traffic, called D-ITG
(Distributed Internet Traffic Generator). We point our attention
on the innovative architectural choices and the consequent
interesting results. Indeed, thanks to the novel proposed
distributed architecture, D-ITG reaches the highest performance
over all the considered platforms and it shows interesting and
innovative features in terms of supported protocols, available
traffic patterns and meters type. In a heterogeneous network
scenario, we think that D-ITG is an essential tool for network
testing and planning activities. We compared our tool with
several of the currently available and most widely adopted traffic
generators and we found that D-ITG offers several improvements
in terms of both functionalities and performance. The presented
architecture and the comparative analysis shown in this work
confirm our assumption.

Keywords: Internet Traffic Generation, Distributed
Architecture, Performance Evaluation.

1. Introduction
Over the last twenty years, considerable effort has been made

to understand and characterize the behavior of the Internet. The
extreme complexity of large topologies and their traffic
characteristics make the development of analytical models
difficult. Under such conditions, simulation is the most
promising technique for understanding network behavior.
Simulation modeling of computer networks is an effective
technique for evaluating the performance of networks as well as
transport and application-level protocols. Traffic generation is
one of the key challenges in modeling and simulating the
Internet. For a small simulation with a single congested link,
simulations are often run with a small number of competing
traffic sources. However, for a larger simulation with a more
realistic traffic mix, a basic problem is how to introduce
different traffic sources into the simulation. For this reason, most
of the international researchers move towards simulation
environments like ns [1] or others. At the same time, simulating
how wide area networks behave is complicated by the
heterogeneity of these networks and their fast pace of evolution.
The interaction between the traffic from the diverse suite of
protocols that operate over the Internet and the hierarchical
nature of the topologies are a few of the factors contributing to
the complexity of such large networks [2]. We refer to [3] for a
detailed description of the many difficulties involved in
simulating the Internet realistically. In this work we present a
contribution to one of the most critical aspects of network
architecture analysis: synthetic generation of realistic traffic
over real networks. The motivations at the base of our choice are
the following. Significant progress has been made in the last few
years in tools for realistic traffic generation, for both simulations
and analysis. An approach of “real simulation” permits to
overcome some typical constraint: (i) generally we simulate
protocols but we ignore how they are actually implemented in
terminals and nodes; (ii) we need to consider computational

aspects for applications, nodes, systems; (iii) macro-scale
evaluations highly depending on phenomena dynamics; (iv) in a
simulation environment like ns there is a synchronous
coordination among the simulated events.
This paper is organized in five sections. After this introduction,
Section 2 presents the motivations at the base of D-ITG and a
list of the relevant features. In the Section 3 D-ITG model details,
architectural choices and functional modalities are presented.
Section 4 shows a complete D-ITG performance analysis and a
comparative study over a multiplatform scenario among several
traffic generators. Finally, Section 5 presents some conclusions
and the issues for future research and applications.

2. Distributed Internet Traffic Generator (D-
ITG)

For analysis of new applications and network mechanisms
over the Internet and for testing Quality of Service (QoS)
architectures, a generator of controllable, scalable, synthetic but
realistic IP traffic is required. D-ITG [4] has been developed for
this purpose. From our point of view, “realistic” traffic is
defined as traffic that is statistically similar to traffic generated
on a real network from real protocols/applications. D-ITG can
generate multiple independent flows with given traffic profiles
(in terms of Inter Departure Time and Packet Size variables). D-
ITG works on: (i) PC with Linux Operating System and
Windows Operating System as well; (ii) PDAs with Linux
Familiar Operating System.
In general, other generators typically produce traffic in a
controlled test-bed environment where there are few real users
and a corresponding low traffic load. In the field of traffic
generators as far as workload granularity, several approaches are
possible: (i) Aggregate traffic, (ii) Connection flow or session
arrival, (iii) Flow duration or lifetime, (iv) Packet arrival within
single connection. D-ITG aims to emulate complex network
systems generating traffic on a packet-by-packet basis. A traffic
flow is specified through the packet Inter Departure Time (IDT)
- the time between the transmissions of two successive packets -
and the Packet Size (PS) - the amount of data being transferred
by the packet. By using this information, a per protocol traffic
model could be created. Both processes (IDT and PS) are
modeled as i.i.d. series of random variables (constant, uniform,
exponential, pareto, normal, cauchy, etc…). Due to the
architectural approach adopted, for each flow users can define
the pattern of packet emission with millisecond resolution. One
of the interesting features is the possibility to reproduce exactly
the same experiment by choosing the same seed values for IDT
and PS random processes. With respect to traffic generators
working at session level, flow level or connection level, one of
the major advantages of a packet level traffic generator is its
simplicity. At opposite side, packet level traffic generators miss
some aspect of network behavior. One of these is that the
characteristic of one packet could determine the characteristics
of successive packets. In this case a per packet traffic generator
would require an extremely complex set of rules to model this
kind of behavior.

SPECTS '04 659 ISBN: 1-56555-284-9

mailto:stavallo@unina.it, pescape@unina.it, giorgio@unina.it
mailto:demma@napoli.consorzio-cini.it

By using D-ITG it is possible to evaluate a set of QoS
performance metrics related to throughput, loss, delay and jitter.
In our opinion, D-ITG is a key component for the experiments in
a testing or planning phase for IP based networks. In particular,
in the context of QoS IP networks is useful to have software
architectures able to evaluate the performance of IP traffic
control mechanisms supporting QoS. As far as this last point D-
ITG provides setting the TOS (Type of Service) field and TTL
(Time to live) field too. Statistics related to the generated traffic
flow can be collected by analyzing the information stored by
both the sender and the receiver. An appropriate utility enables
to determine the average values of throughput, delay, jitter and
packet loss not only on the whole duration of the experiment, but
also on windows of the desired duration. Finally, different
protocols may be tested to discover differences in performance.
To demonstrate the applicability, the performance and the
usefulness of D-ITG this paper shows an example of a simple
scenario created for testing D-ITG performance in an
experimental test-bed. The test-bed is an IP based
communication platform where a complete and comprehensive
comparative analysis is carried out. Indeed after a complete
analysis of D-ITG we present a detailed comparative analysis
with the following other traffic generators: Mtools [5],
Rude/Crude [6], Mgen [7], Iperf [8] and UDPgenerator [9]. The
comparative studies in this paper are conducted with CBR
(Constant Bit Rate) UDP traffic, even though D-ITG is able to
generate stochastic traffic patterns.
In this paper we point our attention on the innovative solutions
that we introduced in the field of traffic generators and we
analyze the related achieved performance. The motivations at
the base of our work are presented in [10] where a complete
analysis of related work is present too. In [11] considerations
and details on different distributed D-ITG implementations are
presented and finally, the use of D-ITG for a comprehensive
performance analysis of heterogeneous wireless networks is
described in [12] and [13].

3. D-ITG Software Architecture
D-ITG platform defines a distributed multi-component

architecture for high performance Internet traffic generation in
heterogeneous environment. The main components of D-ITG
are: (i) Internet Traffic Generator Sender (ITGSend), (ii) Internet
Traffic Generator Receiver (ITGRecv), (iii) Internet Traffic
Generator Log Server (ITGLog), (iv) ITGSend Manager

(ITGManager). Each one of the previous component and in
particular ITGSend and ITGRecv present an internal distributed
implementation: several kinds of distributed architectures have
been carried out (i.e. an MPI version is available). More details
of distributed version are reported in [11]. Figure 1 shows a
graphical overview on the relationship among the four
main bricks of D-ITG platform.
ITGSend and ITGRecv coordinate their activities implementing
the Traffic Specification Protocol (TSP), described below, over a
separate signaling channel. A similar signaling channel is used
by ITGManager to drive ITGSend. Both ITGSend and ITGRecv
can use ITGLog to collect information about the generation
experiment using a Log channel and a signaling channel. In the
next subsections we present the Traffic Specification Protocol
and each component of the D-ITG platform.

3.1. Traffic Specification Protocol (TSP)
In order to set up an innovative and efficient architecture for

the traffic generation we introduced a novel protocol for the
definition of each experiment requirements: sender and receiver
decide the experiment parameters and control the traffic
generation by using TSP. In particular, TSP is a protocol that we
introduced in order to: (i) create a connection between a sender
and a receiver; (ii) authenticate a receiver; (iii) exchange
information on a generation process; (iv) close a sender-receiver
connection; (v) detect generation events;
Figure 2 and Figure 3 show the TSP state diagram of both the
receiver and the sender representing the transitions following the
possible events. According to this protocol, the generation of a
traffic flow is preceded by: (i) the creation of a connection
between the sender and the receiver; (ii) the receiver
authentication obtained by a challenge protocol; (iii) the
exchange of information on the flow to be generated; (iv)
moreover, the sender must communicate the end of a flow
generation to the receiver. Figure 4 shows a generic TSP packet.
The only mandatory field is type; 15 values have been defined
for it, the unused values are available for future extensions of the
protocol. The type value defines the set of fields included in the
packet. Table 1 describes the purpose of each TSP packet, with
the indication of the corresponding value for the type field;
instead, Table 2 describes the meaning of the different fields
when used in different TSP packets.

Figure 1: D-ITG Component Architecture

ACK_Connect
waiting

Connect

authentication

Ack_ Conncet /
CryptoRSA

Flow_ack
wating

CryptoRSA /
SendFlow

generation

Ack_Flow / _

release_ack
waiting

CryptoRSA /
Err_msg1

close_ack
waiting

 Timeout /
Closed_Flow

Ack_Closed /
Send_Release

Ack_Release / _

 Err_msg2 / _

Discovey /
 Ack_Discovery

startend

Figure 2: TSP Sender side

waiting

authentication
start

authentication
end

generation

SendFlow / ack_flow

connect / ack_connect
release / ack_release

cry
ptoRSA / cry

ptoRSA

err_msg1 / _
SendFlow / err_msg2

closedflow /ack_flow

Discovery

Timeout/ Discovery

Ack_discovery/_

Timeout/_

Figure 3: TSP Receiver side

SPECTS '04 660 ISBN: 1-56555-284-9

Flow Id

0 16 328 24

Dest IP

Dest PortType Protocol

UP Protocol

Crypto (128 byte)

File Name (32 byte)

Figure 4: TSP Packet

3.2. ITGSend Architecture
ITGSend is the sender component of the D-ITG traffic

generation platform. ITGSend can operate in three different
modes:
• single flow mode (Figure 5): ITGSend generates a single

flow; a single thread is responsible for the generation of the
flow and the management of the signaling channel through
the TSP protocol;

• multiple flows mode (Figure 6): ITGSend generates a set of
flows; it operates as a multithreaded application. One of the
threads implements the TSP protocol and drives the
generation process, while the others generate the simulated
flows.

• daemon mode (Figure 7): ITGSend is remotely controlled by
ITGManager using the ITGApi. ITGApi is an API that
currently provides just one function, which can be used to
send a message to ITGSend. This message specifies the
parameters (destination IP address and port, inter-departure
time characterization,…) of the flow to be generated.

Each flow to be generated by ITGSend is basically described by
the packet inter-departure process and the packet size process.
Both processes are modeled as independent and identically
distributed (i.i.d.) series of random variables.The user can
choose a distribution for these random variables among those
implemented (constant, uniform, normal, cauchy, pareto,
exponential,…). Moreover, ITGSend allows sending traffic
according to the theoretical models for various protocols (Telnet,
DNS, VoIP,…). This means that the user can simply choose one
of the implemented protocols, the distributions and the
corresponding parameters for the inter-departure and packet size
random variables are automatically determined by ITGSend. In
this way D-ITG generates “synthetic but real traffic over real
networks”.
To collect statistics on the generation process ITGSend can log
detailed information about the generated flows: (1) flow number;
(2) sequence number; (3) source address; (4) destination address;
(5) transmission time; (6) receiving time; (7) packet size.
This information can be stored either in a local log file or in a
remote log file using the log server ITGLog. This log file is
processed at a later stage in order to provide, for example, the
average delay (either one-way-delay or round-trip-time) and the
loss rate experimented by packets.
The real traffic generation is heavily influenced by the CPU
scheduling: several processes (both user and kernel level) can be
running on the same PC and this has a bad impact on the quality
of the generated flow. Since the real-time support of the
operating systems where ITGSend can be used is not very
efficient (due to their scheduling mechanism and the inevitable
timer granularity), it was necessary to use a strategy. A variable
records the time elapsed since the last packet was sent; when the
inter-departure time must be awaited, this variable is updated. If

its value is less than inter-departure time the remaining time is
awaited, otherwise the inter-departure time is subtracted from
the value of this variable and no time is awaited. This strategy
guarantees the required bit rate, even in presence of a non real-
time operating system. Also the choice of a multithreaded
implementation of ITGSend is tied to the need of limiting the
interference among the generations of different simultaneous
flows.

Figure 5: Generation in single flow mode

Figure 6: Generation in multiple flow mode

ITGRecv
daemon

ITGSend
ITGRecv

Thread #1

ITGRecv
thread #1.1

ITGSend
ITGRecv

Thread #n

ITGRecv
thread #n.1

Data Channel

Signaling Channel - TSP

Thread Control

Figure 7: ITGRecv daemon model.

3.3. ITGRecv Architecture
ITGRecv always works as a concurrent daemon: it listens for

new TSP connections on port 9000; when a TSP connection
request arrives, ITGRecv generates a new thread that is
responsible for the TSP protocol implementation; as shown in
Figure 7, and each single flow is received by a separate thread.
Similar to ITGSend, ITGRecv generates a log file that describes
at packet level each received flow. This log file can be stored
locally or remotely using the log server ITGLog.

3.4. The signaling channel

D-ITG implements the TSP protocol over a TCP signaling
channel between the sender ITGSend and the receiver ITGRecv.
Thanks to the multithreaded implementation of both ITGsend
and ITGRecv, each signaling channel can be used for multiple
flows generation. For each multiple flows generation experiment
a TSP connection between an ITGRecv controller thread and an
ITGSend controller thread is established.

SPECTS '04 661 ISBN: 1-56555-284-9

This thread implements the TSP protocol and it is responsible
for instantiating and terminating the threads that generate and
receive the simulated flows. The coordination between the
controller thread and the threads that are delegated to generate or
receive packets is made using the Inter Process Communication
(IPC) [14] in Unix-like systems, or the event communication
[15] in Windows system.

3.5. ITGRecv authentication

The D-ITG platform has been designed and implemented to
simulate Internet traffic at very high bit rate. This feature can be
easily used to implement attacks such as Denial of Service
(Figure 8). To limit this event, and in general to arrange an
agreement between sender and receiver, before starting a
generation experiment ITGRecv and ITGSend implement a
challenge-response authentication protocol [16]. The use of this
authentication method allows ITGSend to make sure that the
receiving host really wants to receive traffic. Thus, to implement
a DoS attack using D-ITG it is necessary that the attacked host
has already been under the control of an intruder (the attacker
was able to start ITGRecv on it).

3.6. ITGLog

ITGLog is a “log server”, running on a different host with
respect to ITGSend and ITGRecv, which receives and stores the
log information from multiple senders and receivers. The
logging activities is handled using a signaling protocol.

ITGSend

ITGSend

ITGSend

ITGSend

Internet

Figure 8: DoS attack with ITGSend

This protocol allows each sender/receiver to register on, and to
leave, the log server. The log information can be sent using
either a reliable channel (TCP) or an unreliable channel (UDP).
ITGLog can be used in different scenarios such for example:
1. wide area traffic generation (Figure 9): when D-ITG is used

in a wide area distributed scenario ITGLog can be used to
easily collect the log file of all the senders/receivers. In this
way it is possible to implement a centralized and possibly
“on_the_fly” results analysis;

2. device with limited storage resource (Figure 10): if a device
with limited storage resource, such as for example a PDA
(Personal Digital Assistant), is used to send or receive a
traffic flow, ITGLog can be used to collect the log
information that can not be stored over a such device.

Internet

ITGSend

ITGSend

ITGSend

ITGRecv

ITGLog

Log Data

Simulated
Flow

ITGRecv

Figure 9: ITGLog in wide area experiment

ITGSend

ITGLog

ITGRecv
Log Data

Simulated
Flow

Figre 10: ITGLog in a wireless experiment

3.7 ITGManager
As described before, ITGSend can be launched in daemon mode
and stay idle waiting for commands from ITGManager.
ITGManager uses ITGApi to remotely control ITGSend.
ITGApi is a C++ API that currently provides just one function,
which enables ITGManager to send a message to ITGSend.
Through this message, ITGManager can issue the generation of
a traffic flow. The syntax of this message is the same as that
used to require a flow generation from the command line.
ITGManager can remotely control more than one ITGSend, as
depicted in
Figure 11. In this way, ITGManager can control the whole traffic
crossing the network. This feature can be used, for example, to
test centralized routing algorithms in a real environment. Indeed,
we can assume the presence of a “network controller” which
receives flow requests and determines the path that the
corresponding flow must follow in order to satisfy flow
requirements and optimize network resource usage.
We are assuming that the network architecture allows to
explicitly routing flows (e.g. MPLS). After the path has been
established, ITGManager can issue the generation of the traffic
flow. By collecting statistics about average delay, jitter and
packet loss related to several flows, we can compare the
performance of different traffic engineering algorithms.

4. D-ITG: comparative analysis and
performance evaluation

SPECTS '04 662 ISBN: 1-56555-284-9

In this section before presenting experimental results, we present
a complete description of D-ITG features. D-ITG gives the
ability to generate network traffic on remote network segments
for a "What If" analysis during the planning and management of
networks. Using D-ITG is useful in order to perform highly
specific tests on remote network segments from a central
management station.

IT G R e c v

S im u la te d
F lo w

IT G M a n a g e r c o m m a n d

IT G M a n a g e r

IT G S e n d

IT G R e c v

IT G S e n d

IT G S e n d

Figure 11: ITGSend in daemon mode

This provides a fast and efficient way to perform
troubleshooting, stress testing on specific devices and capacity
planning Table 3 presents a comparative schema that
summarizes D-ITG characteristics and contrasts it with respect
to other widely used traffic generators. In [10] a detailed related
work analysis is reported. D-ITG is currently available both on
Linux and Windows platform. It presents both a multithread and
a multitask implementation. The supported protocols are: TCP,
UDP, ICMP, DNS, Telnet, VoIP (G.711, G.723, G.729, Voice
Activity Detection, Compressed RTP). Currently we are
working on SMTP, HTTP, FTP, P2P, SNMP, MPEG protocol
implementation. The provided stochastic processes both in the
case of PS and IDT are Constant, Uniformly distributed,
Exponentially distributed, Pareto distributed, Cauchy distributed,
Normal distributed, Poisson distributed, Gamma distributed.
Thanks to this wide range of supported stochastic processes it is
possible to reproduce a broad range of traffic mixture. D-ITG
provides setting of generation seed: this option gives the
possibility to repeat different experiments using the same seed.
D-ITG can perform both one-way-delay (OWD) measurement
and round-trip-time (RTT) measurement, packet loss evaluation,
jitter and throughput measurement. Another innovative feature
of D-ITG is the possibility to store information both on the
receiver and on the sender and, additionally, to remotely store
information. As far as this last feature, D-ITG enables the sender
and the receiver to delegate the logging operation to a remote
log server; this option is useful when the receiver has limited
storage capacity - e.g. PDAs, palms, etc. – and when the log
information must be analyzed “on-the-fly”, for example, in case
the sender is asked to adapt the transmission rate based on
channel congestion and receiver capacity. D-ITG permits the
setting of TOS (DS) and TTL packet field. Both experiment
duration and delay (initial time of the experiment) can be set.
The communication between sender and receiver is made by
using a separated signaling channel that implements a protocol
for the configuration of traffic generation experiment (Traffic
Specification Protocol). Furthermore, the sender can be remotely
controlled by using ITGapi. This means that the D-ITG sender
can be launched in daemon mode and waiting for commands, so
that generation of traffic flows can be remotely controlled. By
using this feature is possible to test traffic engineering
algorithms in a real network.

D-ITG is able to reach high (receiver and sender) data rate. In
particular, in a local environment (sender and receiver over the
same Linux platform) the maximum data rate is equal to 511
Mbps both at sender and receiver side; in a distributed
environment (sender and receiver over two different Linux
platforms) the maximum data rate is equal to 612 Mbps at
sender side and 611 Mbps at receiver side. As far as this last
point in this section in order to demonstrate D-ITG performance
we present a performance analysis study both over Linux and
Windows platform. We study the D-ITG performance over a
local machine too in order to (i) study the interference between
sender and receiver process and (ii) isolate the dependencies
from network dynamics. In Table 4 and Figure 12 all parameters
of our experimentation and the network testbed are summarized.

Catarella
Eth0: 192.168.3.1

Giuseppe
Eth0: 192.168.3.2

1 GigaBit

Figure 12: Testbed

4.1. Linux Platform: local experimentation

In this case we study D-ITG performance at sender and receiver
side by storing information at sender and receiver side. This
feature is not available in all analyzed traffic generators. Thus
we present both the results related to logging phase only at
receiver side and results related to logging phase at sender and
receiver side.

This “modus operandi” has been carried out over the same
platform (local experimentation, sender and receiver over the
same device) and between two distinct but identical PCs
(distributed experimentation, sender and receiver over two
distinct devices).

Received Data Rate [Mbps]

570
580
590
600
610
620
630
640
650
660

73000 75000 77000 79000

[pk t /s]

Expected

Real

Figure 13: Local received data rate over Linux platform (log at
receiver side)

4.1.1. Local experimentation with logging only at
receiver side

Over Linux platform and by using the log file at the receiver
side D-ITG presents the performance depicted in Figure 13. In
Figure 14 the percentage loss rate (between real and expected
data rate) as a function of the packet rate is reported. In the case
of C=75000pkt/s, c=1024byte, t=60s D-ITG reaches a received
data rate equal to 611Mbit/s with a percentage loss rate equal to
0.4%.
By using the same parameters, in

SPECTS '04 663 ISBN: 1-56555-284-9

Figure 15 a comparative analysis between traffic generators that
can log at receiver side is reported. As far as experimental
results, D-ITG shows the best performance. It is important to
underline that Iperf (which presents a percentage loss rate equal
to 5,3% with respect to 0,4 % of D-ITG) works in a different
way with respect to D-ITG. Indeed Iperf does not produce a log
file: it provides only an estimation of received and transmitted
date rate at the end of the experiment. By using Iperf it is not
possible to make a complete performance study, it is only
possible to determine average values on the whole duration of
the experiment.

Loss Rate (%)

0

0,5

1

1,5

2

2,5

73000 75000 77000 79000

[pkt /s]

L
o

ss
R

at
e

(%
)

Figure 14: Local loss rate (%) over Linux platform (log at receiver
side)

Received Data Rate [Mbps]

614 611

156 250
43

581
406

0
200
400
600
800

Exp
ec

ted

D-IT
G

M
too

ls

Rud
e/C

ru
de

M
ge

n
Ip

er
f*

UDPge
ner

Traffic generators

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Figure 15: Comparative analysis of local received data rate over
Linux platform (log at receiver side)

4.1.2. Local experimentation with logging both at
receiver and sender side

Over a single Linux platform and by using log file both at
receiver and sender side D-ITG presents the performance
depicted in Figure 16 and Figure 17.
In particular in Figure 16 (Figure 17) a comparative analysis
with respect to generated (received) data rate between traffic
generators that can log both at receiver and sender side is
reported. In the case of C=63000pkt/s, c=1024byte, t=60s D-ITG
reaches a received data rate equal to 511Mbps. By observing
Figure 16 and Figure 17. it is possible to understand that: (i) by
logging both at sender and receiver side D-ITG presents a
reduction of 100 Mbps; (ii) both D-ITG and Iperf can receive all
sent packets. Other analyzed generators present a high rate of
loss packets. Iperf presents a percentage reduction higher than
D-ITG when the log process, at both side of the communication,
is performed. Finally, in this case Mtools presents a generated
data rate higher than that one observed in
Figure 15: this is due to the different packet rate (C).

4.2. Windows Platform: local experimentation

4.2.1. Local experimentation with logging only at
receiver side

Over Windows platform and by using the log file at the
receiver side, D-ITG presents the performance depicted in
Figure 18.
In the case of C=30000pkt/s, c=1024byte, t=60s D-ITG reaches
a received data rate equal to 241Mbit/s with a percentage loss
rate equal to 1.8%. At the same received data rate Iperf and
Mtools present respectively a loss rate equal to 38% and 5.3%.
In addition, in section 4.1.1 we have already clarified that the
Iperf logging process does not permit a complete performance
analysis.

Generated Data Rate [Mbps]

516 511
430

358

500

0
100
200
300
400
500
600

E
xp

ec
te

d

D
-I

T
G

M
T

O
O

LS

T
G

2

Ip
er

f*

Traffic generators

G
en

er
at

ed
D

at
a

R
at

e
[M

b
p

s]

Figure 16: A comparative analysis with respect to generated data
rate over Linux platform (local and log at sender and receiver side)

Received Data Rate [Mbps]

516 511

180
84

500

0
200
400
600

T r af f i c gener at or s

Figure 17: A comparative analysis with respect to received data rate
over Linux platform (local and log at sender and receiver side)

Received Data Rate [Mbps]

245 241
151

232

0
100
200
300

Exp
ec

te
d

D-IT
G

M
ge

n

Ip
er

f*

Traffic generators

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Figure 18: Comparative analysis of local received data rate over
Windows platform (log at receiver side)

SPECTS '04 664 ISBN: 1-56555-284-9

In Figure 19 the percentage loss rate (between real and expected
data rate) as a function of packet rate is reported. In
Figure 20 the percentage loss rate trend is depicted.

4.2.2. Local experimentation with logging both at
receiver and sender side

In this subsection we can analyze only D-ITG because there
are not traffic generators, over Windows platform, that can log
both at sender and receiver side. In this case, D-ITG presents a
reduction of 102 Mbps (Figure 21). Indeed in this case, with a
percentage loss rate equal to 1.8%, we had a max data rate equal
to 143 Mbps for 17500 pkt/s (in the previous case for the same
percentage loss rate we had a max data rate equal to 245 Mbps
for 30000 pkt/s). In Figure 22 and in Figure 23 the percentage
loss rate respectively at sender and receiver side is depicted.

Received Data Rate [Mbps]

100

150

200

250

300

20000 25000 30000 35000

P ack et R at e [pk t /s]

Expected

Real

Figure 19: Local received data rate over Windows

Loss Rate (%)

0

2

4

6

20000 25000 30000 35000

P acket R at e [pk t /s]

loss rate %

Figure 20: Local loss rate (%) over Windows platform (log at
receiver side)

Before to study the performance in a distributed testbed, we can
conclude that under the same conditions, over Windows
platforms the maximum data rate is less than maximum value
over Linux platforms.

4.3. Linux Platform: distributed experimentation

In this subsection we describe the results of the distributed
experimentation over Linux platform. In this case we used the
same operational mode of the section 4.1.

4.3.1. Distributed experimentation with logging
only at receiver side

Between two Linux devices and by using the log file at the
receiver side D-ITG present the performance depicted in Figure
24. In Figure 25 a percentage loss rate (between real and
expected data rate) as a function of packet rate is reported. In the
case of C=77000pkt/s, c=1024byte, t=60s D-ITG reaches a
received data rate equal to 627 Mbit/s with a percentage loss rate
equal to 0.5%. In Figure 25 the percentage loss rate trend is
depicted. It is important to note that also over two distinct
devices D-ITG is able to reach high performance. Figure 26

shows a comparative analysis between traffic generators over
two distinct devices.

Gener at ed D at a R at e [Mbps]

50

100

150

200

250

17500 20000 22500 25000 27000

P acket R at e [pkt / s]

Expected R eal Sender Data Rate

Figure 21: Local generated data rate over Windows platform (log
both sender and receiver side)

L oss R at e at S ender S i de [%]

0

1

2

3

4

5

6

17500 20000 22500 25000 27000

P acket R at e [pkt / s]

Figure 22: Local loss rate (%) at sender side over Windows
platform (log both sender and receiver side)

L oss R at e at R ecei v er S i de [%]

0

1

2

3

4

5

6

17500 20000 22500 25000 27000

P acket R at e [pkt / s]

Figure 23: Local loss rate (%) at receiver side over Windows
platform (log both sender and receiver side)

Received Data Rate [Mbps]

560

580

600

620

640

660

73000 75000 77000 79000

P acket R at e [pkt /s]

Expected

Mbps

Figure 24: Distributed received data rate over Linux platform (log
at receiver side)

SPECTS '04 665 ISBN: 1-56555-284-9

Also in this case, D-ITG presents the best performance. It is
important to underline that Rude/Crude for 77000 pkt/s presents
a very low performance (11 Mbps). Indeed we studied the
Rude/Crude performance by varying the packet rate: the results
are depicted in Figure 27. Rude/Crude presents the maximum
data rate for a packet rate equal to 60000 pkt/s (438 Mbps with
an error, between the expected and real value, equal to 0.9%).
Thanks to this analysis, we can conclude that: (i) Rude/Crude is
able to reach data rate up to 438 Mbps whereas D-ITG reaches
627 Mbps; (ii) Rude/Crude cannot generate traffic with a high
packet rate. Regarding Iperf, we must take into account the
observation made at the end of the section 4.1.1

Loss Rate [%]

0

0,5

1

1,5

2

2,5

73000 75000 77000 79000

P ack et R at e [pk t /s]

loss rate %

Figure 25: Distributed loss rate (%) over Linux platform (log at
receiver side)

Received Data Rate [Mbps]

630 627

240
11

404 325 386
200

0
200
400
600
800

E
xp

ec
te

d

D
-I

T
G

M
to

ol
s

R
ud

e/
C

ru
de

*
R

ud
e/

C
ru

de
*

M
ge

n

Ip
er

f*
*

U
D

P
ge

ne
r

Traffic generators

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Figure 26: Distributed received data rate over Linux platform
(log at receiver side)

4.3.2. Distributed experimentation with logging
both at receiver and sender side

Over two distinct Linux devices and by using log file both at
receiver and sender side D-ITG presents the performance
depicted in Figure 28. In this figure the data rate (both at sender
and receiver side) trend is reported. In the case of C=75000pkt/s,
c=1024byte, t=60s D-ITG reaches a generated data rate equal to
612Mbps (with an error equal to 0.5%). The logging process at
sender side implies a maximum data rate reduction in the
generation phase. Moreover, all generated packets have been
received at receiver side. In Figure 29 a comparative analysis
among traffic generators over two distinct Linux devices with
respect to generated data rate is shown. In the same way in
Figure 30 a comparative analysis with respect to received data
rate is sketched. Results shown in Figure 29 and in Figure 30
present some interesting properties: (i) D-ITG presents (both at
sender and receiver side) high performance; (ii) TG2 presents
very high performance. This result is not valid for the local
experimentation. Indeed, in that case TG2 reaches respectively
358Mbps at sender side and 84Mbps at receiver side. Instead, D-

ITG presents substantially the same performance both in the
local and in the distributed experimentation.

Rude/Crude Received Data Rate
[Mbps]

0

100

200

300

400

500

600

700

P acket R at e [pk t /s]

Expected
Real

Figure 27: Distributed loss rate (%) over Linux platform (log at
receiver side)

Max D at a R at e [Mbps]

595

615

635

73000 75000 77000 79000

P acket R at e [pkt / s]

Expected

Sender

Receiver

Figure 28: Generated and received data rate over Linux devices
(distributed and log both at sender and receiver side)

4.4. Windows Platform: distributed
experimentation

In this subsection we describe the results of the distributed
experimentation over Windows platform. In this case we used
the same operational mode of the section 4.3.

4.4.1. Distributed experimentation with logging
only at receiver side

Between two Windows devices and by using the log file at the
receiver side D-ITG present the performance depicted in Figure
31. In Figure 32 a percentage loss rate (between real and
expected data rate) as a function of packets per second number is
reported. In the case of C=30000pkt/s, c=1024byte, t=60s D-ITG
reaches a received data rate equal to 242Mbit/s with a
percentage loss rate equal to 1.4%.
It is important to note that also over two distinct devices D-ITG
is able to reach its higher performance. Figure 33 shows a
comparative analysis between traffic generators over two
distinct devices: also in this case D-ITG presents the highest
performance.
4.4.2. Distributed experimentation with logging
both at receiver and sender side

D-ITG is the only traffic generator that, over Windows
platform, permits to log both at sender and receiver side. Thus,
over two distinct Windows devices and by using log file both at
receiver and sender side D-ITG presents the performance
depicted in Figure 34 (sender) and in Figure 35 (receiver).
In this configuration with C=20000pkt/s, c=1024byte, t=60s D-
ITG reaches a generated data rate equal to 161 Mbps (with an
error equal to 1.5 %). The logging process at sender side implies
a maximum data rate reduction in the generation phase.
Moreover, all generated packets have been received at receiver
side.

SPECTS '04 666 ISBN: 1-56555-284-9

Generated Data Rate [Mbps]

614 612

165

614
384

0
200
400
600
800

E
xp

ec
te

d

D
-I

T
G

M
T

O
O

LS

T
G

2

Ip
er

f*

Traffic generators

G
en

er
at

ed
D

at
a

R
at

e
[M

b
p

s]

Figure 29: A comparative analysis with respect to generated data
rate over Linux platform (distributed and log at sender and receiver

side)

Received Data Rate [Mbps]

614 611

70

614 384

0
500

1000

E
xp

ec
te

d

M
T

O
O

L
S Ip
er

f*

Traffic generators

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Figure 30: A comparative analysis with respect to received data
rate over Linux platform (distributed and log at sender and receiver

side)

Received Data Rate [Mbps]

150

200

250

300

350

25
00

0
30

00
0

35
00

0
37

00
0

Packet Rate [pkt/s]

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s] Expected

Mbps

Figure 31: Received data rate over Windows platform (distributed
and log at receiver side)

4.5. A cross platform experimentation
In this subsection we present an interesting study concerning a

cross platform performance analysis. We choose traffic
generators running both over Windows and Linux platforms and
we carried out a comparative analysis interchanging the role of
sender and receiver: let TGi the i-th traffic generator, let W-TGi

the Windows version of the i-th traffic generator and let L-TGi

the Linux version of the i-th traffic generator. We carried out a
complete performance measurement in the case of:

• L-TGi Sender Æ W-TGi Receiver

• W-TGi Sender Æ L-TGi Receiver

Loss Rate at Receiver Side (%)

0

2

4

6

8

25000 30000 35000 37000

Packet Rate [pkt/s]

Figure 32: Loss rate (%) trend over Windows platform (distributed
and log at receiver side)

Received Data Rate [Mbps]

245 242
172 183

0
50

100
150
200
250
300

T r af f i c gener at or s

Figure 33: Comparative analysis of received data rate over Windows
devices (distributed and log at receiver side)

Generated Data Rate [Mbps]

0
50

100
150

200
250
300
350

20000 25000 30000 35000

P acket R at e [pkt /s]

Expected

S ender

Figure 34: Generated data rate over Windows platforms
(distributed and log at sender and receiver side)

Received Data Rate [Mbps]

0
50

100
150
200
250
300
350

20000 25000 30000 35000

Packet Rate [pkt/s]

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Expected

Receiver

Figure 35: Received data rate over Windows platforms
(distributed and log at sender and receiver side)

SPECTS '04 667 ISBN: 1-56555-284-9

4.5.1. Linux Sender and Windows Receiver
Before presenting the comparative study we show the D-ITG

performance when the pkt/s growths. Figure 36 shows the
Windows D-ITG receiver data rate by using a Linux D-ITG
sender. In this case with C=60000pkt/s, c=1024byte, t=60s D-
ITG reaches a generated data rate equal to 483Mbps (with an
error equal to 1.6%).
After D-ITG multiplatform analysis, Figure 38 shows a
comparative analysis among traffic generators. Also in the
multiplatform environment D-ITG presents the best performance.
In a heterogeneous network scenario where a high number of
Operating Systems are present, we believe that this feature is
very interesting.

4.5.2. Windows Sender and Linux Receiver

Figure 39 shows the Linux D-ITG receiver data rate by using
a Windows D-ITG receiver. In this case with C=30000pkt/s,
c=1024byte, t=60s D-ITG reaches a generated data rate equal to
483Mbps (with an error equal to 1.6%). Also in this case D-ITG
shows the best performance.
In the previous subsections a complete comparative analysis is
described. We presented only the results related to a single
combination of packet rate (C) and packet size (c). We carried
out a similar experimentation for different combination of C and
c: D-ITG showed the best performance in these cases too. In the
presented combination of c and C we experimented the highest
D-ITG performance.

Received Data Rate [Mbps]

0

100

200

300

400

500

600

50000 55000 60000 65000

P acket R at e [pk t /s]

Expected

Mbps

Figure 36: Received data rate with Linux Sender and Windows
Receiver (distributed and log at sender and receiver side)

Loss Rate (%)

0

1

2

3

4

5

6

50000 55000 60000 65000

P acket R at e [pkt /s]

loss rate %

Figure 37: Loss rate (%) with Linux Sender and Windows Receiver
(distributed and log at sender and receiver side)

6. Conclusions and directions for future
works

In this paper we presented a traffic generation platform that
we called D-ITG and an innovative protocol for traffic
specification and experiment control. We called this protocol
TSP, Traffic Specification Protocol. The platform architecture

and each component of our novel proposal have been presented:
ITGSend, ITGRecv, ITGLog and ITGManager. After the
architectural details, we presented all D-ITG features and
experimental results on generated and received data rate. D-ITG
showed innovative characteristics when it is compared with
other widely used traffic generators. An experimental analysis
has been conducted over Linux and Windows platform: D-ITG
showed the highest performance over both platforms and it was
able to generate at high transfer rate with high values of packet
size. Furthermore, D-ITG Linux implementation showed better
performance than D-ITG Windows implementation.

Received Data Rate [Mbps] Linux Sender -->
Windows Receiver

491 483
190 330

0
200
400
600

Exp
e.

..
D-IT

G
M

ge
n

Ip
er

f*

Traffic generators

R
ec

ei
ve

d
D

at
a

R
at

e
[M

b
p

s]

Figure 38: Comparative analysis of received data rate with Linux
Sender and Windows Receiver (distributed and log at sender and

receiver side)

Received Data Rate [Mbps]
Windows Sender --> Receiver Linux

245 242 214 211

0
50

100
150

200
250
300

T r af f i c gener at or s

Expected

D-IT G

Mgen

Iperf

Figure 39: Comparative analysis of received data rate with Windows
Sender and Linux Receiver (distributed and log at sender and

receiver side)

D-ITG showed almost the same performance both in local and
distributed environments. Finally, taking into account the
received and generated data rate and the comparative analysis
reported in Table 3, we believe that D-ITG shows interesting
properties with respect to other traffic generators. D-ITG is
currently downloadable and freely available at
www.grid.unina.it/software/ITG and, to our knowledge, in terms
of software architecture, modus operandi and results, no other
similar platforms are available. Currently D-ITG is running over
Linux Familiar platform too. We developed this porting because
we believe that in a heterogeneous wireless scenario it is
essential to have a tool running over PDA or Palm platforms, in
order to understand network behavior. As far as this last point
we are working on the porting on Win CE and PocketPC
platforms. We developed a mechanism for authentication
between sender and receiver. This feature permits to naturally
extend our work in a web based scenario. We imagine a
framework where people, by downloading our D-ITG receiver
over their own devices and by means of a web application, can
use our hardware platform and our traffic generation server for

SPECTS '04 668 ISBN: 1-56555-284-9

checking networks or devices. Finally, the possibility to
remotely control traffic generation enables to conduct
experiments in the field of dynamic and automatic network
configuration.

Acknowledgements
This work has been carried out partially under the financial
support of the “Ministero dell'Istruzione, dell'Università e della
Ricerca (MIUR)” in the framework of the FIRB Project
"Middleware for advanced services over large-scale, wired-
wireless distributed systems (WEB-MINDS)".

References
[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. "Advances in
Network Simulation". IEEE Computer, 33 (5), pp. 59-67, May 2000
[2] V. Paxson, S. Floyd “Why we don’t know how to simulate the
internet”, In Proceedings of the 1997 Winter Simulation Conference,
SCS (December 1997)
[3] S. Floyd, V. Paxson "Difficulties in simulating the Internet.
ACM/IEEE Transactions on Networking, 9(4):392–403, February 2001.
[4] http://www.grid.unina.it/software/ITG
[5] A. Pescapè, M. D'Arienzo, S. P. Romano, M. Esposito, S. Avallone,
G. Ventre, ``Mtools'' IEEE Network, Software Tools for Networking
2002, Vol. 16 No. 5 pag. 3. ISSN 089080445

[6] http://www.atm.tut.fi/rude
[7] http://mgen.pf.itd.nrl.navy.mil
[8] http://dast.nlanr.net/Projects/Iperf/
[9] http://www.citi.umich.edu/projects/qbone/generator.html
[10] A. Pescapè, S. Avallone, G. Ventre “Analysis and experimentation
of Internet Traffic Generator”, New2an’04, Next Generation Teletraffic
and Wired/Wireless Advanced Networking, pp. 70-75 – ISBN 952-15-
1132-X
[11] A. Pescapè, D. Emma, G. Ventre, “Analysis and experimentation of
an open distributed platform for synthetic traffic generation”, Accepted
for publication at 10th IEEE FTDCS 2004 - May 2004 - China
[12] A. Pescapè, S. Avallone, G. Ventre ``Distributed Internet Traffic
Generator (DITG): analysis and experimentation over heterogeneous
networks'', accepted poster at ICNP 2003
[13] A. Pescapè, G. Iannello, G. Ventre, L. Vollero, “Experimental
analysis of heterogeneous wireless networks”, WWIC 2004,
Wired/Wireless Internet Communications 2004, LNCS Vol. 2957 - pp.
153 - 164, ISBN: 3-540-20954-9
[14] S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman.
"The Design and Implementation of the 4.3BSD UNIX Operating
System," Addison-Wesley, 1989.
[15] C. Petzold, “Programming Windows, Fifth Edition”, Microsoft
Press, published 11/11/1998, ISBN 1-57231-995-X
[16] C. Adams, “The Simple Public-Key GSS-API Mechanism
(SPKM)”, rfc 2025, October 1996

Type Description Type Description Type Description
1 Connection request: the sender

requests a connection
6 Flow close acknowledgement: the

receiver acknowledges the end of a
flow generation

11 Connection close request:
the sender requests to close
the connection

2 Connection acknowledgement: the
receiver accepts the connection
request

7 Connection close
acknowledgement:
the receiver acknowledges closing
the connection

12 Log configuration: the sender
sends to the receiver information on
the log server configuration

3 Flow generation request: the
sender requests the permission to
generate a flow

8 Discovery request: the sender tests
the receiver

13 Log configuration
acknowledgement: the receiver
acknowledges the log configuration
packet.

4 Flow generation close: the sender
informs the receiver about the end
of a flow generation

9 Discovery reply: the receiver replies
to a sender discovery

14 Error 1: unable to accept flow
generation request, the specified
port is unavailable

5 Flow generation
acknowledgement: the
receiver grants the permission to
generate a flow

10 Crypto: an encrypted information is
sent for authentication purpose

15 Error 2: receiver authentication
failed

Table 1: Description of TSP racket

Type 3 12 Dest Port

Description Port where the receiver
will listen for traffic

Port where the log server
listens for log information

Type 3 12 Protocol

Description Protocol type (UDP, TCP or
ICMP)

Transport Protocol used to
communicate with the log
server

Type 3, 4, 5, 6 Flow Id

Description Identifier of the generated
flow

Type 3 12 Dest IP

Description Receiver IP address Log server IP address

Type 3Application
Layer Protocol Description Simulated application layer

protocol

Type 10 Crypto

Description Encrypted information
needed for authentication

Type 12 File name

Description Log file name
Table 2: Description of fields

SPECTS '04 669 ISBN: 1-56555-284-9

http://www.citi.umich.edu/projects/qbone/generator.html
http://dast.nlanr.net/Projects/Iperf/
http://mgen.pf.itd.nrl.navy.mil/
http://www.atm.tut.fi/rude
http://www.grid.unina.it/software/ITG

7UDIILF�
*HQHUDWRUV�

2SHUDWLQJ�
6\VWHPV� 3URWRFROV� 2SWLRQV� 2SHUDWLYH�PRGH� /RJJLQJ�3KDVH�

0HWHUV�
7\SH�

�
/,
1
8
;
�

:
LQ
GR
Z
V�

8
QL
[�
OLN
H�

8
'
3�

7
&
3�

,&
0
3�

7
HO
QH
W�

9
R,
3�

'
1
6�

7
7
/�

7
2
6�

3U
LR
ULW
\�

6H
HG
�

'
XU
DW
LR
Q�

'
HO
D\
�

6L
QJ
OH
��)
OR
Z
�

5
HP
RW
H�

0
XO
WLS
OH
�)
OR
Z
�

6H
QG
HU
�

5
HF
HL
YH
U�

5
HP
RW
H�

2
:
'
0
�

5
7
7
0
�

'�,7*� 9� 9� � 9� 9� 9� 9� 9� 9� 9�9�9�9�9�9� 9� 9� 9� 9� 9� 9� 9� 9�
58'(�&58'(� 9� � 9� 9� � � 9� � 9� � 9� � 9� 9�

0*(1� 9� 9� 9� 9� � � � � � 9�9� � �9� � 9� � 9� � 9� � 9� �
7*�� 9� � 9� 9� 9� 9�9� � �9� � 9� � � 9� 9� � 9� �
,SHUI� 9� 9� 9� 9� 9� � � � � � � � �9� � 9� � 9� � � � 9� �

1HW3UREH� 9� � 9� 9� � � � � � � � � � � � 9� � 9� 9� � � � 9�
7I*HQ� � 9� � 9� � � � � � � � � � � � 9� � � 9� � � � �
7UDIILF� 9� 9� 9� 9� 9� � � � � � � �9� � 9� � 9� � � � � �

0722/6� 9� � 9� 9� � � 9 � 9�9�9� 9� � 9� 9� 9� � 9� 9�
8'3*HQHUDWRU� 9� 9� 9� � � � � � � 9� � � 9� � 9� �

7UDIILF�
*HQHUDWRUV� ,'7�� � � 36� � �

�
3D
UH
WR
�

&
RQ
VW
DQ
W�

8
QL
IR
UP
�

(
[S
RQ
HQ
WLD
O��

&
DX
FK
\�

1
RU
P
DO
�

*
DP
P
D�

3R
LV
VR
Q�

3D
UH
WR
�

&
RQ
VW
DQ
W�

8
QL
IR
UP
�

(
[S
RQ
HQ
WLD
O��

&
DX
FK
\�

1
RU
P
DO
�

*
DP
P
D�

3R
LV
VR
Q�

,Q
FU
HP
HQ
WD
O�

'�,7*� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� 9� �
58'(�&58'(� 9� 9� � � � � �

0*(1� � 9� � � � � � 9� � 9� � � � � � � �
7*�� 9� 9� 9 9� 9� 9 � � � �
,SHUI� � 9� � � � � � � � 9� � � � � � � �

1HW3UREH� � 9� � � � � � � � 9� � � � � � � �
7I*HQ� � 9� � � � � � � � 9� � � � � � � �
7UDIILF� � 9� 9� � � � � � � 9� 9 � � � � 9�

0722/6� 9 9� 9� 9 9 9� 9 9 � � �
8'3*HQHUDWRU� 9� � 9� � � � � �

Table 3. Traffic Generators: Comparative Schema

Linux: Linux Mandrake 9.1 with kernel 2.4.21-013mdk and Linux Red Hat 9 with kernel 2.4.22.

Windows: Windows XP Professional 2002, Service Pack 1.
Software
Details

c = Packet Size (byte)

Traffic
Details

T = 60 sExperiment
Duration

C = packets per second (pps or pkt/s)

Protocol: UDP

CBR, Constant Bit Rate

Ethernet Controller: 3Com Gigabit LOM (3c940)

2 PCs with a Gigabit Ethernet back-to-back connectionNetworks
Details

Hard Disk: Maxtor 6Y080L0 (Fast ATA/Enhanced IDE Compatible, Ultra ATA/133 Data
Transfer Speed, 2MB Cache Buffer, Quiet Drive Technology, 100% FDB motors)

RAM: 1024 MB

Intel Pentium 4 2,6 GHz - CPU Cache 512

Hardware
Details

Table 4: Experiment parameters

SPECTS '04 670 ISBN: 1-56555-284-9

	TITLE PAGE
	SPECTS Table of Contents
	ACROBAT HELP
	A Distributed Multiplatform Architecture For Traffic Generation
	Abstract
	Keywords:
	1. Introduction
	2. Distributed Internet Traffic Generator (DITG)
	3. D-ITG Software Architecture
	3.1. Traffic Specification Protocol (TSP)
	3.2. ITGSend Architecture
	3.3. ITGRecv Architecture
	3.4. The signaling channel
	3.5. ITGRecv authentication
	3.6. ITGLog
	3.7 ITGManager

	4. D-ITG: comparative analysis and performance evaluation
	4.1. Linux Platform: local experimentation
	4.1.1. Local experimentation with logging only at receiver side
	4.1.2. Local experimentation with logging both at receiver and sender side

	4.2. Windows Platform: local experimentation
	4.2.1. Local experimentation with logging only at receiver side
	4.2.2. Local experimentation with logging both at receiver and sender side

	4.3. Linux Platform: distributed experimentation
	4.3.1. Distributed experimentation with logging only at receiver side
	4.3.2. Distributed experimentation with logging both at receiver and sender side

	4.4. Windows Platform: distributed experimentation
	4.4.1. Distributed experimentation with logging only at receiver side
	4.4.2. Distributed experimentation with logging both at receiver and sender side

	4.5. A cross platform experimentation
	4.5.1. Linux Sender and Windows Receiver
	4.5.2. Windows Sender and Linux Receiver

	6. Conclusions and directions for future works
	Acknowledgements
	References

