
1

Design, Implementation, and Testing of a

Hybrid Tool for Network Topology Discovery

Alessio Botta, Walter de Donato, Antonio Pescapé, and Giorgio Ventre

University of Napoli “Federico II”, Italy

{a.botta,walter.dedonato,pescape,giorgio}@unina.it

Abstract

In this Technical Report we report our activities on the Design, Implementation, and Testing of a Hybrid Tool

for Network Topology Discovery we calledHynetd.

I. I NTRODUCTION

Computer networks are becoming ever more ubiquitous and, asa consequence, more and more complex. The

knowledge of the topology of a network allows to improve its management and to execute more accurate simulations.

In the first case, substantial advantages in fault management, performance analysis and service allocation are

obtainable. In the second one, there is a benefit because of the automatic generation of realistic topologies is

a difficult task [1]. In addition, due to dynamic behavior andlarge size of real network topologies, the discovery

process has to be necessarily performed in an automatic fashion and it should supply complete and correct results

as soon as possible, generating as few traffic as possible.

In the past years, several techniques and tools have been proposed. We have classified them inActive, Passive,

andHybrid. The first is based on tools such as Ping and Traceroute, inferring topology information from network

behavior, and the second one uses SNMP and to obtain information from devices. Using active methodology

introduces two additional problems: (i) recognizing the interfaces belonging to the same network device, problem

known asalias resolution; (ii) reconstructing correct subnet ids and net-masks. Finally, we refer asHybrid a tool

that uses both methodologies.

In our previous work [2] we proposed a preliminary version ofan algorithm implemented inHynetd (v. 0.1), a

hybrid tool that assumes minimum prerequisites on the network (i.e. one or more address ranges to be scanned). In

this technical report we present the newHynetdversion (v. 0.2) having a new and a more efficient architecture and

containing some techniques to improve discovery efficiencyand performance. More precisely, we introduce new

approaches and modified the first version in order to: (i) perform the steps followed by the algorithm in a parallel

fashion; (ii) reduce the redundancy of the information collected and, therefore, (iii) to reduce the traffic overhead;

(iv) improve the alias resolution phase; (v) increase the accuracy of the link reconstruction phase. To demonstrate

the improved performance of the novel approach, we provide results of a careful comparison with both the first

version and with NetworkView 3.5 [25], a commercial topology discovery software. The experimental evaluation

March 28, 2007 DRAFT



2

has been carried out in terms of accuracy, traffic overhead, and discovery time over two network scenarios (small

and large scale topologies).

The rest of the paper is organized as follows. Section 2 presents a review of the most relevant works about

topology discovery. In Section 3 the design ofHynetd0.2 is shown. Section 4 explains its architecture, innovations,

and improvements. In Section 5 we present small and large scale experimental analysis. Finally, Section 6 ends the

paper with conclusions and issues for research.

II. REVIEWING THE LITERATURE

Since 1993 many works dealing with Topology Discovery have been published. They differ in terms of method-

ology used, number of employed probes, prerequisites and explored protocol layers. In this section we revise such

works according to the classification of the methodologies we proposed in Section I.

First, we report the works using an active methodology.

The authors of [3] propose an algorithm namedIned that uses Ping and Traceroute from a single source point.

They introduce, for the first time, two techniques to resolvethe alias resolutionproblem which are based on DNS

inverse look-up and the source address of ICMP port unreachable packets (known as Source Address technique)

respectively.

The Skitter project [7] faces the problem of Internet topology discovery at two different layers, that are IP

and Autonomous Systems (AS). One of its components, namelyiffinder,performs the alias resolution by using a

combination of the Source Address and the Ping with Record Route option (PingRR in the following). Moreover

this is the only project supporting the Traceroute IP option[8], even if it is not widely supported by operational

devices.

Mercator project [11] tries to discover the Internet topology using active only methodologies. It is the first to

exploit source routing in order to increase the number of discovered interfaces and to reveal transversal links.

Barford et al. in [12], by using the Traceroute tool, study the utility of adding information sources when performing

wide-area measurements in the context of Internet topologydiscovery. They show that the utility of additional

measurement sites rapidly declines even after the first two sites.

The Rocketfuel project [15] is aimed to discover ISP topologies and presents a centralized architecture that

employs many probes. It introduces a new technique to resolve aliases, named Ally algorithm, that exploits ‘id’

field of IP header extracted from ICMP port unreachable errorpackets.

In [17] Magoni and Hoerdt present Nec (Network Cartographer) whose aim is to map the heart of the Internet

as fast as possible with the highest attainable accuracy. Their approach focuses on routers and layer 3 links and

introduces some heuristics to minimize the number of IP address pairs involved in alias resolution.

In [19] Gunes e Sarac, after an analysis of all alias resolution techniques proposed in literature, introduce a new

method that exploits the partial symmetry of routes from a source to a destination. This approach does not generate

additional traffic overhead because it only uses Traceroutediscovered paths.

Traceroute@home [16] introduces theDoubletreealgorithm whose efficiency has been proved to reduce traffic

March 28, 2007 DRAFT



3

overhead generated by many probes using Traceroute toward many destinations. To the best of our knowledge it is

the first project released under GPL license and freely available.

Second, we analyze the works using a passive methodology.

Mansfield et al. [5] propose a framework aimed to map Internettopology using only SNMP. This approach has

been proved to be not effective because of limited access permissions in a wide and heterogeneous network such

as Internet.

Bejerano et al. [9], [10] propose several algorithms exploiting SNMP to infer topologies at both layers 2 and 3.

These algorithms have been partially implemented in BindView’s NETinventory software. Their approach is very

efficient, but practically usable only in single administrative domains.

Remos [13] is an architecture useful to provide shared resource information to distributed applications. To retrieve

data from different networks and hosts, it utilizes severalcollectors using different technologies, such as SNMP or

benchmarking. Anyway, Remos is tailored to distributed applications, such for example grid computing, therefore

it can not be used for general purpose network topology discovery.

Nazir et al. [18] propose an SNMP based algorithm that tries to overcome the limitations related to the support

of such protocol on network devices. It also features a visualization module that progressively shows the resulting

topology during the discovery process.

Third, a review of the works using a hybrid methodology follows.

The Fremont system [4] is the first example of hybrid architecture, composed of several discovery modules each

of them exploiting different protocols and information sources.

In [6], Kashav et al. introduce a base algorithm, then specialized using the combination of different techniques

such as SNMP, routing information and Traceroute. They alsopresent some heuristic methods to obtain subnet

associated net-masks the most useful of which is namedsubnet guessing from a cluster of addresses.

As for proprietary solutions, SNMP-based tools for automatic discovery of network topology are included in

many commercial network management systems (i.e. HPs OpenView [20], IBMs Tivoli [21] and RocketSoftware

NetCure [22]). These tools assume that SNMP is widely deployed, but they also send ICMP messages toward

not SNMP-capable hosts and routers. Details of their discovery algorithms are proprietary and not available to

the authors of this work. Among these tools, in order to perform a comparison with Hynetd, we have selected

NetworkView [25] because there is a 30 days trial version available for download. It is a tool which discovers

both network and application layer topologies exploiting ICMP,SNMP, NetBIOS e TCP (port scanning). Moreover

it shows results, in graphical format, during the scanning process.

Our approach is aimed at maintaining minimal prerequisites, being usable on every IP based network, and

exploiting all the available information sources to discover the topology. For this purpose,Hynetdarchitecture has

been conceived as hybrid and multi-threaded.

Hynetdintroduces some innovations: (i) an algorithm named Backtrace, that efficiently implements the execution

of many concurrent Traceroutes; (ii) a novel approach for IPalias resolution using Ping with Record Route option;

(iii) some rules that reduce the number of IP addresses pairsinvolved in the Ally algorithm and (iv) an heuristic

March 28, 2007 DRAFT



4

Fig. 1. Business type model.

to recognize serial links in some specific conditions. In addition, it is maintained under GPL license and freely

available on the Internet [23]. This permits to compare it with other tools and over other networks.

III. D ESIGN

Hynetd has been designed by using UML (Unified Modeling Language) and following the guidelines from

software engineering for object oriented programming. Fig. 1 shows the business type model that highlights the

classes belonging to application domain. The discovered topology is made of 3 lists of objects:NetLinks, NetNodes

andSubnets. NetNodehas a related list ofInterfaces, which, in turn, have anArpTableRowslist associated.Subnet

has a list of associatedNetNodeswith at least one interface associated. TheGlobalOptionsobject stores all the

information needed to perform the discovery, such asIpRangeslist andSNMP communitylist. Finally, IcmpTable

rows (namedIcmpRow) are filled up by active methodologies during the data collection phase. Its structure has been

designed to allow the storage of all obtained information and the to quickly reconstruct both Traceroute and PingRR

discovered paths in both source-destination and destination-source directions. Such aspect is important because it

allowed us to design and implement efficient algorithms for data post-processing.

The activity diagram in Fig. 2 shows an high level view of theHynetdalgorithm. Such diagram highlights two

functional macro-blocks that respectively perform the data collection and its post-processing needed to reconstruct

the final topology. These blocks are sequentially executed because the first interacts with the network and its nodes

while the second one works off-line on acquired data. Only the first phase involves multi-thread activities to obtain

March 28, 2007 DRAFT



5

Fig. 2. High level architecture activity diagram.

overlapping among I/O operations.

During the development phase, several tests were performedon all Hynetdcomponents by using mock-objects

technique, to progressively verify, correct, and improve their operation.

IV. HynetdARCHITECTURE ANDMODULES

As remarked in Section III,Hynetd operates in two main phases: data collection and post-processing. In this

section we will explain in details the operations performedin such phases.

Data collection is carried out in three steps:scanning, interrogation and alias resolution. As shown in Fig. 3,

first of all a scan of all IP ranges provided by the user is performed. For this aim, each thread extracts an IP

address from a range and sends anecho requestto it. Then, if echo replyis received, the same thread verifies

whether SNMP is enabled on this host. If yes, the address is stored in a list namedSNMP list that will be later

used. Otherwise, ICMP mask request, PingRR and Backtrace (see Section IV-A for more details on this algorithm)

are executed in sequence toward this destination, storing the results in the IcmpTable. Afterward, all nodes from

SNMP listare interrogated storing the results directly in the final topology structure. Last step analyzes IcmpTable

to perform alias resolution. It first applies the Source Address and PingRR (see section IV-B) techniques, exploiting

previously collected information stored in the table. Thena pair-wise test is performed, with multiple threads, by

Fig. 3. Scanning thread activity diagram.

March 28, 2007 DRAFT



6

using Ally algorithm only for those pairs not classifiable byAlly prevention rules (see section IV-C). At the end

of this phase all discovered routers have been created and added to the final topology.

In the second phase the final topology is reconstructed by analyzing all the collected information.

First of all, serial links (i.e. associated to a ‘/30’ subnet) are extracted - in order - from SNMP-enabled nodes and

from IcmpTable. In the latter case two different methods canbe optionally selected: the first uses the paths recorded

using Traceroute and PingRR; the second is applied pairwiseand uses some heuristics based on IP address properties.

Afterward, subnets are reconstructed by using, sequntially, three information sources: interfaces of SNMP-enabled

nodes, serial links and, then, the IcmpTable. In the latter case, addresses are grouped looking at the preceding hop

obtained by PingRR. For such subnets, if no hosts responded to ICMP mask request, the net-mask is calculated by

using thesubnet guessing from a cluster of addresses[6] heuristic.

A. Backtrace Algorithm

Backtrace is a novel algorithm designed to reduce the numberof packets needed when tracing the route from

one host toward many destinations. It is also designed to be effective even in presence of routers configured to

avoid their traceability.

As observed by the authors of [16], the information obtainedby using Traceroute from a single source toward

many destinations can be well represented by a tree structure. This property highlights that intermediate nodes are

common to many traced routes. Exploiting this information,the Backtrace algorithm operates in reverse direction

with respect to standard Traceroute. In practice, it sends packets with decreasing values of TTL-field which starts

from the destination hop distance and end when a known host replies. Fig. 4 shows the activity diagram of the

whole algorithm, follows an explanation of how such distance is calculated.

Fig. 4. Backtrace activity diagram.

March 28, 2007 DRAFT



7

TABLE I

USEFUL CASES FROMPINGRR.

Case Addresses inserted

1 DEST - OUT

2 FIX - FIX

3 FIX

Two different methods are introduced to calculate the exacthop distance of each destination. The first uses the

TTL value contained in IP headers carried back by ICMP port unreachable packets. The second uses an heuristic

combining the TTL value of received ICMP echo reply packets with some well known TTL default values ([14]).

As this heuristic method can underestimate the distance, the Backtrace algorithm features a preliminary stage in

which the TTL is increased (starting from the heuristic value) until destination is reached. Using one of the above

methods, the exact hop distance is calculated and the Backtrace algorithm can effectively perform its task.

An additional feature of this algorithm is related to the protocol it uses to send the probing packets. In details,

when a timeout is detected (i.e. the answer from a router is not received), the probe packet is retransmitted by using

another protocol (it alternates between ICMP and UDP). Thisway it is possible to trace the routers filtering one

of the two protocols without restarting the whole trace process, as required by other Traceroute implementations.

B. Alias resolution using PingRR

As remarked in Section III, several tests and analyses have been conducted duringHynetddevelopment. Analyzing

the results of the tests we have observed that the behavior ofdestination nodes, when receiving a packet with Record

Route option, is strongly dependent on the IP stack implementation. Exploiting such differences we have devised

a technique able to perform the alias resolution. In details, from all the possible types of PingRR answers we

identifies three particular cases useful for this aim.

Tab. I contains, for such cases, the addresses inserted by destination host into Record Route option field. As we

can see, they can be one or two depending on the implementation. In the first row of Tab. I, DEST means that such

destination host inserted the address toward which we are sending the packets, together with its outgoing interface

address (OUT). They can be different thus revealing two alias interfaces. In the other two cases (second and third

rows) the FIX address represents the default one used by the destination node for ICMP error packets. It can be

different from destination address we used to send the probepackets thus revealing two alias interfaces.

This technique requires the address/addresses inserted bythe destination host in IP header option fields. However,

all along the path from a source to destination, intermediate nodes may add other addresses to such header. Therefore,

in order to extract only the information inserted by the destination host, different tests exploiting previously collected

data (hop distance, subnet mask, ...) are performed.

As for the efficiency, this method is comparable to the SourceAddress technique. The only limitation is that of

being applicable only to the destinations with a maximum distance of 7 hops from source.

March 28, 2007 DRAFT



8

C. Ally prevention rules

To obtain an accurate alias resolution it is often necessaryto execute many instances of the Ally algorithm.

Applying such algorithm to a set of N addresses, results in
(

N

2

)

executions, each of them requiring at least two

packets to be sent. Therefore, the number of pairs increasesexponentially withN , and the overall process becomes

very expensive in terms of time and traffic.

To cope with this issues, we introduce a set of rules to be applied to each pair preventing the execution of Ally

algorithm when at least one of them applies. Such rules are similar those fromnec[17]. However, in contrast with

our rules,nec require many sources in order to be applied.

The Ally prevention rules we apply to all address pairs are the following: (i) addresses resolving to the same

domain name through DNS inverse look-up are alias; (ii) addresses having hop distances from source which differ

by more than1 hop are not alias; (iii) addresses belonging to the same loop-free path obtained with Backtrace are

not alias; (iv) addresses belonging to the same path obtained with PingRR are not alias; (v) addresses having the

same hop distance from source and belonging to paths, towardthe same destination, obtained with Backtrace or

PingRR are alias;

Along with these rules, another one is utilized: if two addresses are already associated to a node, their aliasing

is skipped. In this way, pairs already aliased using Source Address and Record Route method are not processed by

Ally.

D. Serial link’s Heuristic

Exploiting some properties of the IP addresses of hosts connected though a serial link, this heuristic allows to

identify such links. It can also discover links not traversed by probe packets. The basic idea is that serial links

are characterized by consecutive addresses part of a “/30” subnet. Therefore, by analyzing all addresses pairs from

IcmpTable, we consider as connected through serial links two hosts verifying this set of rules: (i) addresses are

numerically consecutive; (ii) hop distance from source differs by1; (iii) addresses do not end with ”‘00”’ or ”‘11”’

bits; (iv) broadcast and network addresses of the related subnet are not active; (v) broadcast and network addresses

of adjacent subnets are not active.

These rules assumes that the adopted routing algorithm obtains the minimum distance between each pair of

subnets. When this condition is not satisfied, the second rulemay produce false negatives.

E. Further optimizations

Ally algorithm sends UDP packets to obtain ICMP port unreachable replies. Because most routers feature a

rate limit when generating ICMP error packets, a multi-thread execution of such algorithm may cause the loss of

some replies. To overcome this problem, our implementationof the Ally algorithm includes a packet retransmission

mechanism that allows a more effective multi-thread execution. At the same time, this modified version of the

algorithm is able to reduce the number of packets injected into the network.

Moreover, we found that the heuristic “subnet guessing froma cluster of addresses”’ fails in some dummy cases.

As an example, if the cluster contains only 192.168.1.3 and 192.168.1.127, the heuristic returns 255.255.255.128 as

March 28, 2007 DRAFT



9

TABLE II

ROUTER HARDWARE DESCRIPTION.

CPU Pentium 4 3.4 GHz

RAM 2 GB DDR PC3200

Hard Disk 300 MB Serial ATA

Realtek 8139 Fast-Ethernet OnBoard

Network interfaces Davicom Fast-Ethernet 10/100 PCI

Davicom Fast-Ethernet 10/100 PCI

net-mask. The correct one should obviously be 255.255.255.0, because broadcast addresses can not be assigned to

physical interfaces. To solve this problem, we simply introduced a control on the result of this heuristic. If network

id or broadcast address of the subnet are part of the cluster,then the net-mask is widen of a bit.

F. Hynetd modules

Hynetdhas been implemented in C language under Linux OS and it is made of several modules. The most relevant

are: TYPES which defines all the types of the application domain and implements their comparison functions;

SCANNER implementing the data collection and all the algorithms needed for this phase; POSTPROCESSING

which implements the off-line reconstruction of the final topology; SNMP implementing functions to query snmp-

enabled nodes; OUTPUT which implements the console and file output generation.

V. EXPERIMENTAL ANALYSIS

In this section we show the results obtained by a number of experimental tests we performed usingHynetd. As a

first step, we compared the performance of 0.1 and 0.2 versions on a small test-bed network. After, we conducted

some analyses of the 0.2 version on the MAN of the University of Napoli Federico II.

A. Small Scale Analysis

In order to evaluateHynetd performance we first used a controlled test-bed. In this way,we had a complete

knowledge of the topology to be discovered and of the cross traffic relying on the test-bed.

The test-bed was composed of 7 routers (Personal Computers with hardware configuration described in Tab. II

and running Kubuntu Linux 5.10 with kernel 2.6.12) and a notebook (Acer Travelmate 2502 LMI, 3.0 GHz P4,

and 512 MB RAM) running Kubuntu Linux 6.05 we used to executeHynetd.

The tests were executed on two particular topologies (see Fig. 5(left) and Fig.5(right)) on which discovery process

could be difficult (the motivations at the base of such difficulties are provided, for each topology, in the related

section). The parameters we evaluated are: traffic generated (both in-going and out-going), discovery time and a

set of accuracy parameters. In details we define: (i)accuracy of routers, subnetsand links as the ratio between

discovered entities and total entities; (ii)accuracy of interfacesandnet-masksas ratio between correct entities and

total entities with respect to discovered routers and subnets.

March 28, 2007 DRAFT



10

Fig. 5. Ring (left) and Backup (right) topology

Moreover, the tests were executed by using a different number of thread and retry as well as four different

network conditions which are listed in Tab. III. Each test was repeated three times reporting, in the following, the

average results.

1) Ring Topology:it is characterized by a loop and its discovery may fail when adopting active methodologies

from a single source point. Indeed, in such configuration, two routers will not forward packets, therefore they should

not be correctly recognized. Moreover, the link between them is never traversed by probe packets, as a consequence,

it can not be detected.

Tab. IV shows the accuracy obtained by 0.1 and 0.2 versions inall four network conditions. The newestHynetd

version attains the best results in all conditions. Instead, 0.1 version obtains the same results only when using the

passive methodology. Moreover, the serial link heuristic allows to discover the link between Mergellina and Agnano

even if it is not traversed by probe packets. These results confirm thatHynetdapproach can be really effective in

most cases on network topologies which comprises a loop.

Fig. 6 (left) shows the discovery time as a function of the number of threads and retries in the condition we

called Active (see Tab. III). The tests have been performed also in the other conditions and similar results have

been obtained. As we can see, the discovery time decreases when the number of threads increases while it increases

with the number of retries. However, the discovery time taken by version 0.2 is significantly lower and its trend is

more regular. This behavior mostly depends on the higher pipelining featured by such version.

Fig. 6 (right) sketches, for the all considered network conditions, the traffic generated by discovery process as

a function of the number of retries. As shown, such traffic is different for different network conditions. Despite

TABLE III

NETWORK CONDITIONS.

Name Description

Passive SNMP available on all routers and DNS inverse look-up enabled

Active SNMP not available on all routers and DNS inverse look-up disabled

Hybrid 1 SNMP not available on all routers and DNS inverse look-up enabled

Hybrid 2 SNMP available on some routers and DNS inverse look-up disabled

March 28, 2007 DRAFT



11

TABLE IV

ACCURACY IN THE CASE OFRING TOPOLOGY.

Hynetd Network Accuracy

version condition Routers Links Subnets Interfaces Net-masks

passive 100% 100% 100% 100% 100%

0.2 active 100% 100% 100% 100% 100%

hybrid 1 100% 100% 100% 100% 100%

hybrid 2 100% 100% 100% 100% 100%

passive 100% 100% 100% 100% 100%

0.1 active 71% 86% 62% 100% 93%

hybrid 1 71% 86% 58% 100% 93%

hybrid 2 87% 100% 100% 100% 89%

this, it increases with retry value in every condition. The comparison highlights how the introduction of Backtrace

algorithm and Ally prevention rules impacts on the traffic generation.

2) Backup Topology:it is characterized by the presence of a backup path. This path should not be recognized

when using the active methodologies because, in normal conditions, it is never traversed by probe packets. Indeed,

there is a router (which of the seven depends on the routing configuration) that does not forward packets in normal

condition. For this reason, also recognizing such host as a router is not that simple.

Tab. V shows the accuracy obtained by the two versions in all 4network conditions (see Tab. III). Again,Hynetd

0.2 attains the best results in all conditions when comparedto the older version. Indeed, version 0.1 needs the

passively collected information to attain the same results. Moreover, the serial link heuristic allows to discover also

the link between Vomero and SanMartino even if it is not traversed by probe packets. These results confirm that

Hynetdapproach is capable to effectively discover backup paths.

In Fig. ?? (right) we report the traffic generated by the discovery process, in all network conditions, as a function

of the retries value. Again, traffic increases with retries value in every condition but the comparison highlights that

Hynetdversion 0.2 generates less traffic.

Fig. 6. Ring topology: Discovery time in Active condition (left), Traffic generated by discovery process (right)

March 28, 2007 DRAFT



12

Fig. 7. Backup topology: Discovery time in Hybrid 2 condition(left) and Traffic generated by discovery process (right).

Fig. 7 (left) reports the discovery time in Hybrid 2 as a function of the number of threads and retries. As we

can see, such time is in direct proportion to the retries while in inverse to the thread number. For these results the

same considerations of the previous topology apply.

B. Large Scale Analysis

To evaluateHynetd performance on a real and large network with real traffic, we used the metropolitan area

network of the University of Napoli Federico II (named UniNain the following), the properties of which are listed

in Tab. VI. These experiments were performed by using the entire class B address of such network.

The tests were conducted from three different locations (referred as ‘A’, ‘B’ and ‘C’ in the map of Fig. 8) in order

to evaluate the influence of the source position inside the network on the results. Each experiment was performed

by using Active and Hybrid methodologies. In Tab. X we reportmean (µ) and standard deviation (σ) of each

considered parameter averaged on the three location while in Tab. VII, VIII, and IX the results for each location

are presented.

Results show thatHynetdtakes about one hour to discover all the network. As a first consideration, we expected

that by using Hybrid methodology the discovery time would belower, but this was not the case because of the

TABLE V

ACCURACY IN THE CASE OFBACKUP TOPOLOGY.

Hynetd Network Accuracy

version condition Routers Links Subnets Interfaces Net-masks

passive 100% 100% 100% 100% 100%

0.2 active 100% 100% 100% 100% 100%

hybrid 1 100% 100% 100% 100% 100%

hybrid 2 100% 100% 100% 100% 100%

passive 100% 100% 100% 100% 100%

0.1 active 83% 83% 50% 100% 100%

hybrid 1 83% 83% 37% 100% 100%

hybrid 2 83% 100% 100% 100% 100%

March 28, 2007 DRAFT



13

TABLE VI

UNINA NETWORK.

Number of sites 19 Average number of active addresses4808

Physical diameter ≈ 8 Km Average number of active hosts 2774

Network diameter 9 hops Number of links 209

Number of routers 180 Number of subnets 649

Fig. 8. High level view of UniNa network topology.

TABLE VII

RESULTS OBTAINED FROM LOCATIONA

Active Hybrid

µ σ [%] µ σ [%]

Time [s] 3’808 11 3’929 11

Traffic [packets] 413882 11 415’863 6

Traffic [bytes] 17’388’600 11 19’116’124 7

Routers Accuracy [%] 100 0 100% 0

Subnets Accuracy [%] 43 6 53 5

Links Accuracy [%] 75 0 86% 0

Interfaces Accuracy [%] 73 1 75 1

Net-masks Accuracy [%] 56 3 66 1

TABLE VIII

RESULTS OBTAINED FROM LOCATIONB

Active Hybrid

µ σ [%] µ σ [%]

Time [s] 2’708 5 2’690 3

Traffic [packets] 435’863 2 404’649 2

Traffic [bytes] 18’624’244 3 18’859’759 2

Routers Accuracy [%] 100 0 100 0

Subnets Accuracy [%] 46 5 50 4

Links Accuracy [%] 75 0 86 0

Interfaces Accuracy [%] 74 1 76 1

Net-masks Accuracy [%] 58 4 69 2

March 28, 2007 DRAFT



14

TABLE IX

RESULTS OBTAINED FROM LOCATIONC

Active Hybrid

µ σ [%] µ σ [%]

Time [s] 3’017 13 3’205 13

Traffic [packets] 451’780 5 456’377 1

Traffic [bytes] 19’510’104 5 21’432’617 1

Routers Accuracy [%] 100 0 100 0

Subnets Accuracy [%] 49 5 56 4

Links Accuracy [%] 75 0 86 0

Interfaces Accuracy [%] 73 1 75 1

Net-masks Accuracy [%] 53 4 69 2

TABLE X

AVERAGE RESULTS OBTAINED ONUNINA NETWORK

Active Hybrid

µ σ% [%] µ σ% [%]

Time [s] 3’177 18 3’331 19

Traffic [packets] 433’840 4 425’629 6

Traffic [bytes] 18’507’649 6 19’802’833 7

Routers Accuracy [%] 100 0 100 0

Subnets Accuracy [%] 47 6 53 6

Links Accuracy [%] 75 0 86 0

Interfaces Accuracy [%] 74 1 76 1

Net-masks Accuracy [%] 56 4 68 2

presence of many SNMP-enabled network printers that slowlyreplied (involving several timeouts) to queries. Also,

the traffic generated during the discovery process has a little variation and highlights that SNMP queries generate

less but bigger packets. The average traffic byte rate results to be about 6 Kb/sec, which it is negligible when

compared to network bandwidth (i.e.∈ [10Mbps, 32Gbpbs]). Changing the source point had substantial effect only

on subnets and net-masks accuracy. Moreover, using Hybrid configuration the accuracy is always higher. Finally,

comparing the results obtained from the three locations (that are the main cross-connect and two terminal nodes),

we can state that the accuracy is preserved even if the tool isrun from a terminal node.

C. Further Investigations

1) Scalability Analysis:During previous analyses we detected some factors that affect discovery time and

generated traffic. The most important is the number of activeaddresses (hard to predict) in the scanned range.

Starting from this observation, we performed this analysisin order to investigate the influence of the number of

active addresses on the discovery time.

To perform that we called “scalability analysis” we decidedto use 5 classes of ’/24’ subnets which differ in

terms of number of active addresses (that are0, 15, 30, 45, and60 hosts/subnet). We then selected7 subnets, for

March 28, 2007 DRAFT



15

each class, executingHynetdprogressively on one subnet, two, three, and so on.

Fig. 9 shows the discovery time as a function of the number of subnets scanned (left) and of the number of active

hosts per subnet (right). These are two ways to display the same results. The former evidences that the discovery

time increases linearly with address space dimension (i.e.the number of subnets to be scanned) even if the slope

depends on the number of active hosts (i.e. on the subnet class). This is an important result useful to evaluate an

upper bound for the time taken byHynetd to discover a topology of whichever network. Fig. 9 (right) allows to

verify that the discovery time of fixed number of subnets increases more than linearly with the percentage of active

addresses of such subnets.

This same trends is evidenced in Fig. 10 (left) where we report the traffic generated by the discovery tool as a

function of the number of subnets (left) and the number of active hosts per subnet (right).

Finally, Fig. 10 (right) shows that the percentage of total addresses pairs involved in Ally algorithm is small and

decreases when the address space dimension increases. These results confirm the effectiveness of Ally prevention

rules. Indeed, if such rules were not introduced, the numberof pairs would exponentially increase.

2) Comparison with a commercial tool:In this analysis we compared our tool with NetworkView 3.5 [25],

a commercial topology discovery software freely availablein a 30 days trial version. This software uses many

techniques and protocols to achieve also application leveldiscovery. To perform a fair comparison withHynetd, we

enabled only ICMP and SNMP features and chose the same retries and timeout values for both tools. The comparison

was made on a portion of the UniNa network, running the software at location ‘C’ in Fig. 8. NetworkView does

not apply any alias resolution technique, so we expected it to generate less traffic in less time. As shown in Tab.

XI, the results are completely opposite:Hynetd is faster, more efficient and scales better. Moreover, we observed

that the topology discovered by NetworkView is not accuratebecause it seem to recognize as routers only those

responding to SNMP requests.

Fig. 9. Discovery time scalability.

March 28, 2007 DRAFT



16

TABLE XI

Hynetd0.2 VS NETWORKV IEW 3.5.

Hynetd NetworkView

Range Time Pkts Bytes Time Pkts Bytes

’/24’ 49 sec 14248 1268513 1202 sec 22196 2015897

’/23’ 98 sec 18427 1549027 1510 sec 28484 2571034

REFERENCES

[1] V. Paxon, S. Floyd,“Why we don’t know how to simulate the Internet”, Winter Simulation Conference, pp 1037-1044, 1997.

[2] D. Emma, A. Pescaṕe, G. Ventre, “Discovering topologies at router level”, 5th IEEE IPOM 2005 LNCS 3751, pp. 118129, October

2005, Barcelona, Spain.

[3] J. Schnwlder, H. Langendrfer,“How to Keep Track of Your Network Configuration”, TU Braunschweig, Germany, 1993.

[4] Wood et al., “Fremont: A System for Discovering Network Characteristics and Problems”, Winter USENIX Conference, Jan. 1993.

[5] G. Mansfield et al.,“Techniques for automated Network Map Generation using SNMP” , Fifteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, Mar. 1996.

[6] R. Siamwalla, R. Sharma, S. Keshav,“Discovering Internet Topology”, Department of Computer Science, Cornell University, 1999

[7] B. Huffaker, D. Plummer, D. Moore, K. Claffy,“Topology Discovery by active probing”,

CAIDA, University of California, 1998

[8] G. Malkin, “Traceroute Using an IP Option”, RFC1393, 1993

[9] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Sashadri, A. Silbershatz,“Topology Discovery in Heterogeneus IP Networks”,

IEEE INFOCOM’2000, Tel Aviv, Israel, 2000

[10] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, A. Silbershatz, “Topology Discovery in Heterogeneus IP Networks: The

NetInventory System”, IEEE/ACM Transactions on Networking, Vol. 12, no. 3, 2004

[11] R. Govindam, H. Tangmunarunkit,“Heuristics for Internet Map Discovery”, USC/Information Sciences Institute, 2000

[12] P. Barford et al.,“The Marginal Utility of Network Topology Measurements”, ACM/SIGCOMM Internet Measurement Workshop, Nov.

2001.

[13] P. Dinda et al.,“The Architecture of the Remos System,”, 10th IEEE Symp. on High-Perf. Dist. Comp. (HPDC01), Aug. 2001.

[14] http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html

[15] R. Teixeira, K. Marzullo, S. Savage, G. M. Voelker,“In Search of Path Diversity in ISP Networks”, Computer Science and Engineering,

University of California, 2003.

Fig. 10. Generated traffic scalability (left) and Ally pairspercentage scalability (right).

March 28, 2007 DRAFT



17

[16] B. Donnet, T. Friedman, M. Crovella,“Improved algorithms for Network Topology Discovery”, Passive and Active Measurement Workshop

(PAM), 2005.

[17] D. Magoni, M. Hoerdt,“Internet core topology mapping and analysis”, in Computer Communications, vol. 28, no. 5, pp. 494-506, March

2005.

[18] F. Nazir, M. Jameel, T. H. Tarar, H. A. Burki, H. F. Ahmad, A.Ali, H. Suguri, “An Efficient Approach Towards IP Network Topology

Discovery for Large Multi-subnet Networks”, 11th IEEE Symposium on Computers and Communications, 2006.

[19] M. Gunes, K. Sarac,“Analytical IP Alias Resolution”, Department of Computer Science, University of Texas at Dallas, 2006

[20] http://www.openview.hp.com

[21] http://www-306.ibm.com/software/tivoli/

[22] http://www.rocketsoftware.com/portfolio/netcure

[23] http://www.grid.unina.it/software/TD/

[24] N. Spring, R. Mahajan, D. Wetherall,“Measuring ISP Topologies with Rocketfuel”, Computer Science and Engineering, University of

Washington, 2002.

[25] http://www.networkview.com/

March 28, 2007 DRAFT


