
Discovering Topologies at Router Level: Part II
Alessio Botta, Walter de Donato, Antonio Pescapé, and Giorgio Ventre

University of Napoli “Federico II” (Italy),{a.botta,walter.dedonato,pescape,giorgio}@unina.it

Abstract— Measurement and monitoring of network topologies
are essential tasks in current network scenarios. Indeed, due to
their utility in planning, management, security, and reliability of
network infrastructures, effective and efficient approachesand
tools for discovering large topologies are gaining more and more
attention from both Application Service Providers and network
administrators. In this paper we propose a hybrid methodology
and its implementation in a software platform we calledHynetd.
We present the architecture, some novel algorithms and methods
adopted in the discovery chain, and a performance evaluation
over two network scenarios: a small scale test-bed and a large
scale MAN in the heart of Napoli (Italy). Achieved results, in
terms of accuracy, discovery time, and traffic injected, are very
encouraging in both scenarios confirming and improving those
previously obtained by a prototype of Hynetd.

I. I NTRODUCTION

Computer networks are becoming ever more ubiquitous and,
as a consequence, more and more complex. The knowledge
of the topology of a network allows to improve its planning,
management, security, and reliability, as well as to obtainsub-
stantial advantages in fault management, performance analysis
and service allocation. Moreover, as the automatic generation
of realistic topologies is a difficult task [1], such knowledge
proves to be very useful also to perform accurate simulations.
In addition, due to dynamic behavior and large size of real
network topologies, the discovery process has to be necessarily
performed in an automatic fashion and it should supply
complete and correct results with as few probing packets as
possible and within the minimum time.

In the past years, several techniques and tools have been pro-
posed. We have classified them inactive, passive, andhybrid.
The first ones are based on tools such as Ping and Traceroute,
and infer topology information from network behavior, the
second use SNMP to obtain information from devices, whereas
the hybrid approaches use both methodologies. When using
an activemethodology, two problems must be solved: (i) rec-
ognizing the interfaces belonging to the same network device,
referred to asalias resolution; (ii) reconstructing correct subnet
addresses and net-masks. The use of SNMP instead, often
requires particular privileges to be granted by the network
administrator. Using both methodologies together, allowsto
mitigate such problems.

Since 1993 many works dealing with topology discovery
have been published. They differ in terms of methodology,
number of employed probes, prerequisites and explored pro-
tocol layers. Many works using anactive methodology have
been presented in literature [4] [8] [12] [13] [16] [18] [20]

0This work has been partially supported by PRIN RECIPE and CONTENT
EU NoE, OneLab and NETQOS EU projects.

[17]. They heavily use Traceroute, Ping, and some techniques
to perform thealias resolution. As regards works based on
a passivemethodology in [6] [10] [11] [14] [19] different
SNMP-based architectures have been presented. To the best
of our knowledge, few works adopt ahybrid methodology
[5] [7]. Finally, several proprietary and commercial toolsexist
(e.g. HPs OpenView [21], IBMs Tivoli [22], RocketSoftware
NetCure [23], NetworkView [26]). Due to space constraints
we can not provide the details of the cited works, for a more
careful analysis refer to [2].

Analyzing the literature we have found a lack of tools which
are flexible, robust, and publicly available. To this end, we
started the design of an application aimed at maintaining mini-
mal prerequisites, being usable on every IP-based network,and
exploiting all the available information sources to discover the
topology. In [3] a preliminary version (namely 0.1) ofHynetd
(Hybrid Network Topology Discovery) has been presented.
Despite its quite good performance, to improve the discovery
process we have completely revised its architecture. Here
we present version 0.2 ofHynetd with a new and more
efficient architecture aimed to improve discovery efficiency
and performance by means of: (i) multi-threaded activities;
(ii) a new algorithm named Backtrace to efficiently execute
many concurrent Traceroutes; (iii) a novel approach foralias
resolution using Ping with Record Routeoption; (iv) some
rules reducing the number of IP addresses involved in the Ally
algorithm; (v) an heuristic to recognize serial links.Hynetd is
released at [24] under General Public License.

To illustrate the performance improvement, we provide
results of a careful comparison amongst both the first version
of Hynetdand NetworkView 3.5 [26], a commercial topology
discovery software. The performance indicators we consider
are 5 accuracy parameters (described in Section III), probing
traffic amount, and discovery time. The experimental evalua-
tion has been carried out over two network scenarios: a small
scale controlled test-bed and a large scale MAN.

The rest of the paper is organized as follows. Section
II briefly explains Hynetd architecture and the proposed in-
novations. In Section III we present small and large scale
experimental analysis. Finally, Section IV ends the paper with
conclusions and issues for research.

II. HynetdARCHITECTURE

In this section we provide an overview of the new archi-
tecture and some information regarding the innovations we
introduced with respect to [3]. Details on design, planning,
implementation and testing are reported in [2]. The activity
diagram of Fig. 1 shows an high level view of theHynetd

Fig. 1. Activity diagram.

algorithm highlighting two functional macro-blocks: datacol-
lection and post-processing. These blocks are sequentially
executed because the second one requires as much data as
possible to accurately reconstruct the topology. The first phase
involves multi-threaded activities to obtain overlappingamong
I/O operations.

Data collection is carried out in three steps:scanning,
interrogation and alias resolution. The scanning starts by
sending ICMPecho requeststoward the IP addresses provided
by the user. When anecho reply is received, an SNMP
capability test is conducted. If passed, the address is stored
in the SNMP list. Otherwise, ICMP mask request, Ping with
Record Route option (PingRR), and Backtrace (see Section II-
A for more details on this algorithm) are sequentially executed
toward this destination, storing the results in the IcmpTable.
After scanningis completed, all nodes fromSNMP list are
interrogatedstoring the results directly in the final topology
structure. The last step analyzes IcmpTable to perform the
alias resolution. Firstly, the Source Address (see [4] for a
description) and PingRR (see Section II-B) techniques are
applied. Then, a pair-wise test is performed by using Ally
algorithm. Such test is skipped for the pairs classifiable by
Ally prevention rules (see Section II-C). During the last two
steps, discovered routers composing the final topology are
determined.

Data post-processing reconstructs the other elements of
the topology by analyzing the collected information. First
of all, serial links (i.e. associated to a ‘/30’ subnet) are
identified by using the collected SNMP data and the IcmpTable
entries. In the latter case, two methods can be selected: the
first one uses Traceroute and PingRR discovered paths; the
second one, applied pairwise, uses some heuristics based onIP
address properties (see Section II-D). Afterward, subnetsare
reconstructed by sequentially using three information sources:
interfaces of SNMP-enabled nodes, serial links, and IcmpT-
able. For subnets reconstructed by using IcmpTable, if no hosts
responded to ICMP mask request, their mask is calculated
by using thesubnet guessing from a cluster of addresses[7]
heuristic.

A. Backtrace Algorithm

Backtrace is a novel algorithm, designed to reduce the
number of packets needed for tracing the routes from one
host toward many destinations. It is also designed to be
effective even in presence of routers configured to avoid
their traceability. As observed by the authors of [17], the
information obtained by using Traceroute from a single source

TABLE I

PINGRR ANSWERS USEFUL FORalias resolution.

Case Addresses inserted
1 DEST - OUT
2 FIX - FIX
3 FIX

toward many destinations can be well represented by a tree
structure. This property highlights that intermediate nodes are
common to many traced routes. Exploiting this information,
the Backtrace algorithm operates in reverse direction with
respect to standard Traceroute. In practice, it sends packets
with decreasing values of TTL-field which starts from the
destination hop distance and end when a known host replies.
Two different methods are introduced to calculate such dis-
tance. The first one uses the TTL value contained in IP headers
carried back by ICMPport unreachablepackets. The second
one uses an heuristic combining the TTL value of received
ICMP echo replypackets with some well known TTL default
values ([15]). As this heuristic method can underestimate the
distance, the Backtrace algorithm features a preliminary stage
in which the TTL is increased (starting from the heuristic
value) until destination is reached. An additional featureof this
algorithm is related to the protocol it uses to send the probing
packets. In details, when a timeout is detected (i.e. the answer
from a router is not received), the probe packet is retransmitted
by using another protocol (it alternates between ICMP and
UDP). In this way it is possible to trace the routers filtering
one of the two protocols without restarting the whole tracing
process, as required by other Traceroute implementations.

B. Alias resolution using PingRR

During Hynetd development, several tests have been con-
ducted. Analyzing their results we have discovered that the
behavior of destination nodes, when receiving a packet with
Record Route option, is strongly dependent on the IP stack
implementation. Analyzing such differences, we have devised
a technique to perform thealias resolution. In details, from
all the possible types of PingRR answers we identified three
particular cases useful for this aim. Tab. I contains, for such
cases, the addresses inserted by the destination host into
Record Route option field. As we can see, they can be one or
two depending on the implementation. The first row of Tab. I
(case 1) refers to a destination host which inserted the address
toward which we sent the packet (DEST), together with the
outgoing interface (OUT) it uses to forward the echoreply
packet. If different, they reveal two alias interfaces. In the other
two cases (2 and 3) the FIX address represents the default
used by the destination node, for ICMP error packets. This
can be different from the address toward which we sent the
probe packets, thus revealing two alias interfaces. As for the
efficiency, this method is comparable to the Source Address
technique. The only limitation is that of being applicable only
to the destinations with a maximum distance of 7 hops from
the source.

C. Ally prevention rules

To obtain an accuratealias resolutionit is often necessary to
execute many instances of the Ally algorithm. Applying such
algorithm to a set of N addresses, results in

(

N

2

)

executions,
each of which requires at least two packets to be sent.
Therefore, the number of pairs increases exponentially with
N , and the overall process becomes very expensive in terms
of time and traffic. To cope with this issue, we introduce
a set of rules preventing the execution of Ally algorithm to
the address pairs for which any of them applies. Such rules
are similar to those fromnec [18] but, in contrast, they do
not require many sources in order to be applied. The Ally
prevention rules we apply to all address pairs are the following:
(i) addresses resolving to the same domain name through DNS
inverse look-up are alias; (ii) addresses having hop distances
from source which differ by more than1 hop are not alias;
(iii) addresses belonging to the same loop-free path obtained
with Backtrace are not alias; (iv) addresses belonging to the
same path obtained with PingRR are not alias; (v) addresses
having the same hop distance from source and belonging to
paths toward the same destination, obtained with Backtraceor
PingRR, are alias. Moreover, the Ally algorithm is not applied
to the addresses already associated to a node by means of other
techniques.

D. Serial link Heuristic

Exploiting some properties of the IP addresses of nodes
connected through a serial link, this heuristic allows to identify
such links. It can also discover links not traversed by probe
packets. The basic idea is that such hosts have consecutive
addresses which are part of a “/30” subnet. Therefore, by
analyzing all address pairs from IcmpTable, we consider as
connected through serial links, two hosts having all the fol-
lowing properties: (i) addresses are numerically consecutive;
(ii) hop distance from source differs by1; (iii) addresses do
not end with “00” or “11” bits; (iv) broadcast and network
addresses of the related subnet are not active; (v) broadcast
and network addresses of adjacent subnets are not active.
These rules assume the routing algorithm obtains the minimum
distance between each pair of subnets. When this condition is
not satisfied, the second rule may produce false negatives.

E. Further optimizations

The Ally algorithm sends UDP packets to obtain ICMP port
unreachable replies. Because most routers feature a limited
rate when generating ICMP error packets, a multi-threaded
execution of such algorithm may cause the loss of some
replies. To overcome this problem, our implementation of the
Ally algorithm includes a packet retransmission mechanism
that allows a more effective multi-threaded execution. At the
same time, this modified version of the algorithm is able
to reduce the number of packets injected into the network.
Moreover, we found that thesubnet guessing from a cluster
of addressesheuristic fails in some cases. As an example, if
the cluster contains only 192.168.1.3 and 192.168.1.127, the
heuristic returns 255.255.255.128 as net-mask. The correct one

TABLE II

NETWORK CONDITIONS.

Name Description
Passive SNMP available on all routers and DNS inverse look-up enabled
Active SNMP not available on all routers and DNS inverse look-up disabled

Hybrid 1 SNMP not available on all routers and DNS inverse look-up enabled
Hybrid 2 SNMP available only on 2 routers and DNS inverse look-up disabled

should be 255.255.255.0 because broadcast addresses can not
be assigned to physical interfaces. We solve this problem by
widening the net-mask of1 bit when the network id or the
broadcast address of the subnet are part of the cluster.

III. E XPERIMENTAL ANALYSIS

We compared the performance of versions 0.1 and 0.2 on
a small scale test-bed. Moreover, we conducted some exper-
imentations with the version 0.2 on theUniversity of Napoli
“Federico II” MAN, comparing the performance also with
a commercial tool. The parameters we evaluated are: traffic
generated (both in-going and out-going), discovery time and a
set of accuracy parameters. In details we define: (i)accuracy
of routers, subnetsand links as the ratio between number
of discovered and total entities; (ii)accuracy of interfaces
and net-masksas the ratio between number of correct and
total entities with respect to discovered routers and subnets
respectively. The experimentations are aimed to evaluate:i)
the accuracy, discovery time, and generated traffic in different
operating conditions; ii) the impact of the network segment
from which to perform the tests on the considered parameters;
iii) the trend of the discovery time and generated traffic as a
function of the number and dimension of the analyzed subnets;
iv) the effectiveness of the introduced Ally prevention rules.

A. Small Scale Analysis

In order to evaluateHynetd performance, we first used a
controlled test-bed in order to have a complete knowledge of
the topology to be discovered and of the cross traffic relyingon
the network. The test-bed was composed of 7software routers
(3.4 GHz P4, 2 GB RAM, and 3 Fast Ethernet interfaces) with
Linux and a notebook (Acer Travelmate 2502 LMI, 3.0 GHz
P4, and 512 MB RAM) with Linux and runningHynetd. The
tests were executed on two particular topologies (see Fig. 2
and 3) on which the discovery process could be difficult (the
motivations for such difficulties are provided in the related
section). Moreover, they were executed by using different
number of threads and retries as well as four different network
conditions which are listed and explained in Tab. II. Each
test was repeated three times reporting, in the following, the
average results.

1) Ring Topology:it is characterized by a loop and its dis-
covery may fail when adoptingactivemethodologies. Indeed,
in such configuration, two routers will not forward packets.
Therefore they should not be correctly recognized. Moreover,
the link between them is never traversed, as a consequence,
it can not be detected. Tab. III shows the accuracy obtained
by versions 0.1 and 0.2 in all four network conditions.Hynetd
version 0.2 attains optimal results in all considered conditions.

Fig. 2. Ring topology

TABLE III

ACCURACY IN THE CASE OFRING TOPOLOGY.

Hynetd Network Accuracy
version condition Routers Links Subnets Interfaces Net-masks

passive 100% 100% 100% 100% 100%
0.2 active 100% 100% 100% 100% 100%

hybrid 1 100% 100% 100% 100% 100%
hybrid 2 100% 100% 100% 100% 100%
passive 100% 100% 100% 100% 100%

0.1 active 71% 86% 62% 100% 93%
hybrid 1 71% 86% 58% 100% 93%
hybrid 2 87% 100% 100% 100% 89%

Instead, version 0.1 obtains the same results only when using
the passivemethodology. Moreover, the serial link heuristic
allows to discover the link between Mergellina and Agnano
even if it is not traversed by probe packets. These results
confirm that the approach implemented inHynetd 0.2 can
be really effective on network topologies that comprise a
loop. Fig. 4 (left) shows the discovery time as a function
of the number of threads and retries in theactive condition.
The tests have been performed also in the other conditions
and similar results have been obtained. As we can see, the
discovery time decreases when the number of threads increases
while it increases with the number of retries. However, the
discovery time taken by version 0.2 is significantly lower and
its trend is more regular. This behavior mostly depends on the
higher overlapping featured by such version. Fig. 5 sketches
the traffic generated by the discovery process as a function of
the number of retries for all considered network conditions.
As shown, such traffic varies with network conditions. Despite
this, it almost linearly increases with the retry value in every
condition. The comparison highlights how the introductionof
the Backtrace algorithm and Ally prevention rules impacts on
the traffic generation.

2) Backup Topology:it is characterized by the presence of
a backup path. This path should not be recognized when using

Fig. 3. Backup topology

Fig. 4. Discovery time for ring (left) and backup (right) topologies.

TABLE IV

ACCURACY IN THE CASE OFBACKUP TOPOLOGY.

Hynetd Network Accuracy
version condition Routers Links Subnets Interfaces Net-masks

passive 100% 100% 100% 100% 100%
0.2 active 100% 100% 100% 100% 100%

hybrid 1 100% 100% 100% 100% 100%
hybrid 2 100% 100% 100% 100% 100%
passive 100% 100% 100% 100% 100%

0.1 active 83% 83% 50% 100% 100%
hybrid 1 83% 83% 37% 100% 100%
hybrid 2 83% 100% 100% 100% 100%

the active methodologies because, in normal conditions, it is
never traversed by probe packets. Indeed, there is a router
(which one of the seven routers, it depends on the routing
configuration) not forwarding packets in normal conditions.
For this reason, recognizing such host as a router is not simple.
Tab. IV shows the accuracy obtained by the two versions in all
network conditions. Again,Hynetd0.2 attains the best results
in all conditions when compared to the older version. Indeed,
version 0.1 needs the information collected with thepassive
methodology to achieve the same results. Moreover, the serial
link heuristic allows to discover the link between Vomero
and SanMartino even if it is not traversed by probe packets.
These results confirm that theHynetdapproach is capable to
effectively discover backup paths. Fig. 4 (right) reports the
discovery time in Hybrid 2, as a function of the number of
threads and retries. As we can see, such time increases with
the retries, while it decreases with the thread number. For
these results the same considerations of the previous topology
apply. In Fig. 6 we report the traffic generated by the discovery
process, in all network conditions, as a function of the retries
value. Again, traffic increases with the retries value in every
condition, but the comparison highlights thatHynetdversion
0.2 generates less traffic in every network condition.

0 1 2 3 4 5
0

500

1000

1500
Hynetd 0.2 traffic

retries

pa
ck

et
s

0 1 2 3 4 5
0

500

1000

1500
Hynetd 0.1 traffic

retries

pa
ck

et
s

Active
Passive
Hybrid 2
Hybrid 1

Active
Passive
Hybrid 2
Hybrid 1

Fig. 5. Ring topology: Traffic generated by discovery process.

0 1 2 3 4 5
0

2

4

6

8

10

x 10
4 Hynetd 0.2 traffic

retries

by
te

s

0 1 2 3 4 5
0

2

4

6

8

10

x 10
4 Hynetd 0.1 traffic

retries

by
te

s

Active
Passive
Hybrid 2
Hybrid 1

Active
Passive
Hybrid 2
Hybrid 1

Fig. 6. Backup topology: Traffic generated by discovery process.

TABLE V

UNINA NETWORK.

Number of sites 19 Average number of active addresses4808
Physical diameter ≈ 8 Km Average number of active hosts 2774

Network diameter 9 hops Number of links 209

Number of routers 180 Number of subnets 649

B. Large Scale Analysis

To evaluateHynetd performance on a real and large scale
network on which also real traffic is present, we used the
Metropolitan Area Network of the University of Napoli “Fed-
erico II” (named UniNa in the following), reported in Fig. 7,
whose properties are listed in Tab. V. These experiments were
performed by using the class B address of such network. The
tests were conducted from three different locations, referred
to as ‘A’, ‘B’ and ‘C’ in the map of Fig. 7, corresponding to
the main cross-connect and two terminal nodes respectively.
Each experiment was performed by using Active and Hybrid
methodologies. In Tab. VI we report mean (µ) and standard
deviation (σ) of each considered parameter averaged on the
three locations. Results show thatHynetd takes, in average,
about53 minutes to discover the network topology. As a first
consideration, we expected that by using Hybrid methodology
the discovery time would be lower. This was not the case be-
cause of the presence of many SNMP-enabled network printers
that slowly replied (involving several timeouts) to queries.
Also, the traffic generated during the discovery process has
a little variation and highlights that SNMP queries generate
fewer but larger packets. The average byte rate is about 6
Kb/sec, which it is negligible when compared to network

Fig. 7. High level view of UniNa network topology.

TABLE VI

AVERAGE RESULTS OBTAINED ONUNINA NETWORK

Active Hybrid
µ σ% [%] µ σ% [%]

Time [s] 3’177 18 3’331 19
Traffic [packets] 433’840 4 425’629 6
Traffic [bytes] 18’507’649 6 19’802’833 7

Routers Accuracy [%] 100 0 100 0
Subnets Accuracy [%] 47 6 53 6
Links Accuracy [%] 75 0 86 0

Interfaces Accuracy [%] 74 1 76 1
Net-masks Accuracy [%] 56 4 68 2

bandwidth (i.e.∈ [10Mbps, 2.5Gbps]). As for the accuracy,
changing the source point had some effect only on subnets
and net-masks, in overall it is preserved even if the tool is run
from a terminal node. Moreover, using Hybrid configuration
the accuracy is always higher.

C. Further Investigations on Hynetd performance

During previous analyses we detected some factors that
affect the discovery time and generated traffic. The most
important is the number of active addresses in the scanned
range. Starting from this observation, we performed an analy-
sis aimed to investigate the influence of the number of active
addresses on the discovery time. To this aim, we decided to
use 5 classes of ‘/24’ subnets which differ in terms of number
of active addresses (that are0, 15, 30, 45, and60 hosts/subnet).
We then selected7 subnets, for each class, executingHynetd
on an increasing number of subnets. Fig. 8 shows the discovery
time as a function of the number of scanned subnets (left)
and of the number of active hosts per subnet (right). These
are two different ways to display the same results, each of
which evidences a peculiar aspect. The former shows that the
discovery time increases linearly with address space dimension
(i.e. the number of subnets to be scanned) even if the slope
depends on the number of active hosts (i.e. on the subnet
class). This is an important result, useful to evaluate an upper
bound for the time taken byHynetd to discover a topology
of whichever network. Fig. 8 (right), instead, allows to verify
that the discovery time of fixed number of subnets increases
more than linearly with the percentage of active addresses of
such subnets. The same trend is evidenced in Fig. 9 where we
report the traffic generated by the discovery tool as a function
of the number of subnets (left) and the number of active hosts
per subnet (right). As for the effectiveness of Ally prevention
rules, Fig. 10 shows that the percentage of total address pairs
involved in the Ally algorithm is small and decreases when

2 4 6
0

100

200

300

400

500

600

700

Discovery time

of "/24" subnets

se
co

nd
s

0 15 30 45 60
0

100

200

300

400

500

600

700

Discovery time

active hosts / subnet

se
co

nd
s

0 hosts/subnet
~15 hosts/subnet
~30 hosts/subnet
~45 hosts/subnet
~60 hosts/subnet

1 subnet
2 subnets
3 subnets
4 subnets
5 subnets
6 subnets
7 subnets

Fig. 8. Analysis of the discovery time.

TABLE VII

Hynetd0.2 VS NETWORKV IEW 3.5.

Hynetd NetworkView
Range Time Pkts Bytes Time Pkts Bytes
’/24’ 49 sec 14248 1268513 1202 sec 22196 2015897
’/23’ 98 sec 18427 1549027 1510 sec 28484 2571034

increasing the address space dimension. These results confirm
that the Ally prevention rules are actually able to avoid the
number of pairs from exponentially increasing.

D. Comparison with a commercial and proprietary tool

We compared our tool with NetworkView 3.5 [26], a
commercial topology discovery software, freely availablein
a 30 days trial version. This software uses many techniques
and protocols to achieve also application-level discovery. To
perform a fair comparison withHynetd0.2, we enabled only
ICMP and SNMP features and chose the same retries and
timeout values for both tools. The comparison was made on a
portion of the UniNa network, running the software at location
‘C’ in Fig. 7. NetworkView does not apply anyalias resolution
technique, so it should generate less traffic in less time. As
shown in Tab. VII, the results are completely opposite:Hynetd
0.2 is faster, more efficient, and scales better. Moreover, we
observed that the topology discovered by NetworkView is not
accurate because it seems to recognize as routers only the hosts
responding to SNMP requests.

IV. CONCLUSIONS

In this paper we proposed a platform for discovery network
topologies at router level. We provided details on both design
and implementation issues, and we described the new algo-
rithms proposed to enhance the discovering phase. We showed
how, using a hybrid and parallel approach, our proposal is able
to outperform similar platforms. For the comparison we used
both a previous version of our tool and a commercial tool.
We provided evidences that thanks to the introduction of the
Backtrace algorithm, Ally prevention rules, and the seriallink
heuristic,Hynetd0.2 is able to correctly discover the topology
also when other tools fail (ring and backup topologies). More
precisely, we reported results - in terms of accuracy, discovery
time, and traffic injected (over both small and large networks) -
that outperform the older version and the selected commercial
tool. In the case of a large network we showed how the
position of the discovery probe does not heavily affect the final
results. Our ongoing work is concerned with the development
of a module able to merge the information derived from
different instances ofHynetd running at different locations.

2 4 6
0

1

2

3

4

x 10
4 Generated traffic

of "/24" subnets

pa
ck

et
s

0 15 30 45 60
0

1

2

3

4

x 10
4 Generated traffic

active hosts / subnet

pa
ck

et
s

0 hosts/subnet
~15 hosts/subnet
~30 hosts/subnet
~45 hosts/subnet
~60 hosts/subnet

1 subnet
2 subnets
3 subnets
4 subnets
5 subnets
6 subnets
7 subnets

Fig. 9. Analysis of the generated traffic.

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Ally pairs percentage

of "/24" subnets

A
lly

 p
ai

rs
 %

0 hosts/subnet
~15 hosts/subnet
~30 hosts/subnet
~45 hosts/subnet
~60 hosts/subnet

Fig. 10. Percentage of IP addresses pair involved in Ally algorithm.

This will allow to compare the results with other multi-sources
topology discovery tools.

REFERENCES

[1] V. Paxon, S. Floyd,“Why we don’t know how to simulate the Internet”,
Winter Simulation Conference, pp 1037-1044, 1997.

[2] A. Botta, W. de Donato, A. Pescapé, G. Ventre,“Design, Implementa-
tion, and Testing of a Hybrid Tool for Network Topology Discovery”,
TR-DIS-TD-3-2007, available at http://www.grid.unina.it/software/TD/.

[3] D. Emma, A. Pescaṕe, G. Ventre, “Discovering topologies at router
level”, 5th IEEE IPOM 2005, pp. 118-129, Oct.’05, Barcelona, Spain.

[4] J. Schnwlder, H. Langendrfer,“How to Keep Track of Your Network
Configuration”, TU Braunschweig, Germany, 1993.

[5] Wood et al., “Fremont: A System for Discovering Network Character-
istics and Problems”, Winter USENIX Conference, Jan. 1993.

[6] G. Mansfield et al.,“Techniques for automated Network Map Generation
using SNMP”, Fifteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, Mar. 1996.

[7] R. Siamwalla, R. Sharma, S. Keshav,“Discovering Internet Topology”,
Department of Computer Science, Cornell University, 1999

[8] B. Huffaker, D. Plummer, D. Moore, K. Claffy,“Topology Discovery
by active probing”, CAIDA, University of California, 1998

[9] G. Malkin, “Traceroute Using an IP Option”, RFC1393, 1993
[10] Y. Breitbart et al.,“Topology Discovery in Heterogeneus IP Networks”,

IEEE INFOCOM’2000, Tel Aviv, Israel, 2000
[11] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, A. Sil-

bershatz, “Topology Discovery in Heterogeneus IP Networks: The
NetInventory System”, IEEE/ACM Trans. on Net., Vol. 12, n. 3, ’04

[12] R. Govindam, H. Tangmunarunkit, “Heuristics for Internet Map
Discovery”, USC/Information Sciences Institute, 2000

[13] P. Barford et al.,“The Marginal Utility of Network Topology Measure-
ments”, ACM/SIGCOMM Internet Measurement Workshop, Nov.’01.

[14] P. Dinda et al.,“The Architecture of the Remos System,”, 10th IEEE
Symp. on High-Perf. Dist. Comp. (HPDC01), Aug. 2001.

[15] http://secfr.nerim.net/docs/fingerprint/en/ttl_
default.html

[16] R. Teixeira et al., “In Search of Path Diversity in ISP Networks”,
Computer Science and Engineering, University of California, 2003.

[17] B. Donnet, T. Friedman, M. Crovella,“Improved algorithms for Network
Topology Discovery”, Passive and Active Measurement Workshop ’05.

[18] D. Magoni, M. Hoerdt,“Internet core topology mapping and analysis”,
in Computer Communications, vol. 28, no. 5, pp. 494-506, March 2005.

[19] F. Nazir et al., “An Efficient Approach Towards IP Network Topology
Discovery for Large Multi-subnet Networks”, 11th IEEE Symposium on
Computers and Communications, 2006.

[20] M. Gunes, K. Sarac,“Analytical IP Alias Resolution”, Department of
Computer Science, University of Texas at Dallas, 2006

[21] http://www.openview.hp.com
[22] http://www-306.ibm.com/software/tivoli/
[23] http://www.rocketsoftware.com/portfolio/netcure
[24] http://www.grid.unina.it/software/TD/
[25] N. Spring, R. Mahajan, D. Wetherall,“Measuring ISP Topologies

with Rocketfuel”, Computer Science and Engineering, University of
Washington, 2002.

[26] http://www.networkview.com/

